Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 286-296.DOI: 10.16085/j.issn.1000-6613.2024-0108
• Industrial catalysis • Previous Articles Next Articles
YOU Xiaoyin(), WANG Chuqiao, LIU Caihua, PENG Xiaoming(
)
Received:
2024-01-14
Revised:
2024-05-28
Online:
2025-02-13
Published:
2025-01-15
Contact:
PENG Xiaoming
通讯作者:
彭小明
作者简介:
游小银(2002—),女,硕士研究生,研究方向为高级氧化。E-mail:2267653733@qq.com。
基金资助:
CLC Number:
YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296.
游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296.
样品 | 光催化 | 类芬顿 | 光类芬顿 | 协同指数kS | |||
---|---|---|---|---|---|---|---|
kP | k2 | kF | R2 | kPF | R2 | ||
g-C3N4 | 0.0036 | 0.9350 | 0.0035 | 0.9905 | 0.0104 | 0.9704 | 1.465 |
BiVO4 | 0.0076 | 0.9861 | 0.0038 | 0.9988 | 0.0109 | 0.9851 | 0.956 |
CN/BV | 0.0079 | 0.9897 | 0.0039 | 0.9362 | 0.0129 | 0.9939 | 1.093 |
CN/NGBO/BV | 0.0125 | 0.9952 | 0.0065 | 0.9997 | 0.0249 | 0.9203 | 1.311 |
样品 | 光催化 | 类芬顿 | 光类芬顿 | 协同指数kS | |||
---|---|---|---|---|---|---|---|
kP | k2 | kF | R2 | kPF | R2 | ||
g-C3N4 | 0.0036 | 0.9350 | 0.0035 | 0.9905 | 0.0104 | 0.9704 | 1.465 |
BiVO4 | 0.0076 | 0.9861 | 0.0038 | 0.9988 | 0.0109 | 0.9851 | 0.956 |
CN/BV | 0.0079 | 0.9897 | 0.0039 | 0.9362 | 0.0129 | 0.9939 | 1.093 |
CN/NGBO/BV | 0.0125 | 0.9952 | 0.0065 | 0.9997 | 0.0249 | 0.9203 | 1.311 |
1 | WANG Zhihong, LAI Cui, QIN Lei, et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation[J]. Chemical Engineering Journal, 2020, 392: 124851. |
2 | 胡晓峰, 彭清琪, 张文华, 等. g-C3N4纳米片光电极的制备及其光电催化降解四环素性能[J]. 材料工程, 2020, 48(12): 82-89. |
HU Xiaofeng, PENG Qingqi, ZHANG Wenhua, et al. Preparation of g-C3N4 nanosheets photoelectrode and its photoelectrocatalytic activity for tetracycline degradation[J]. Journal of Materials Engineering, 2020, 48(12): 82-89. | |
3 | LIU Caihua, DAI Hongling, TAN Chaoqun, et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2022, 310: 121326. |
4 | ABINAYA Manickavasagan, GOVINDAN Kadarkarai, KALPANA Murugesan, et al. Reduction of hexavalent chromium and degradation of tetracycline using a novel indium-doped Mn2O3 nanorod photocatalyst[J]. Journal of Hazardous Materials, 2020, 397: 122885. |
5 | 刘华瑜. 碳材料对土壤及水体中四环素迁移及环境行为影响的研究[D]. 济南: 山东大学, 2020. |
LIU Huayu. Effects of carbon materials on migration and environmental behavior of tetracycline in soil and water[D]. Jinan: Shandong University, 2020. | |
6 | 石宇, 杨晓婷, 兰贵红, 等. MnO x 掺杂纳米石墨阴极的制备及其对盐酸四环素的降解[J]. 精细化工, 2022, 39(4): 798-805. |
SHI Yu, YANG Xiaoting, LAN Guihong, et al. Preparation of nano graphite cathode doped with MnO x and its degradation for tetracycline hydrochloride[J]. Fine Chemicals, 2022, 39(4): 798-805. | |
7 | FU Junwei, YU Jiaguo, JIANG Chuanjia, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503. |
8 | 徐文媛, 秦晓丹, 况熙. TiO2/RGO和Fe3O4/RGO催化处理模拟废水的研究[J]. 华东交通大学学报, 2019, 36(5): 109-114. |
XU Wenyuan, QIN Xiaodan, KUANG Xi. Study on catalytic treatment of simulated wastewater by TiO2/RGO and Fe3O4/RGO[J]. Journal of East China Jiaotong University, 2019, 36(5): 109-114. | |
9 | ZHANG Yanan, ZHAO Yangguo, YANG Dexiang, et al. Insight into the removal of tetracycline-resistant bacteria and resistance genes from mariculture wastewater by ultraviolet/persulfate advanced oxidation process[J]. Journal of Hazardous Materials Advances, 2022, 7: 100129. |
10 | 郭丰. 化学氧化法处理抗生素制药废水[J]. 世界最新医学信息文摘, 2016, 16(59): 249. |
GUO Feng. Chemical oxidation method for the treatment of antibiotic pharmaceutical wastewater[J]. World Latest Medicine Information, 2016, 16(59): 249. | |
11 | ZHU Ying, LIU Kun, MUHAMMAD Yaseen, et al. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway[J]. Environmental Science and Pollution Research, 2020, 27(5): 5155-5167. |
12 | 华方霞. 半导体导带能级电位对Ag@AgX/半导体复合材料光催化性能影响研究[D]. 青岛: 青岛科技大学, 2016. |
HUA Fangxia. Effect of semiconductor conduction band on the photocatalytic property of Ag@AgX/semiconductor composite[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
13 | CIONTI C, PARGOLETTI E, FALLETTA E, et al. Combining pH triggered adsorption and photocatalysis for the remediation of complex water matrices[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108468. |
14 | RATHI Anuj K, Hana KMENTOVÁ, NALDONI Alberto, et al. Significant enhancement of photoactivity in hybrid TiO2/g-C3N4 nanorod catalysts modified with Cu-Ni-based nanostructures[J]. ACS Applied Nano Materials, 2018, 1(6): 2526-2535. |
15 | 黑梦云, 顾彦, 彭钦天, 等. Triton X-100/正戊醇/环己烷微乳液条件下BiOBr制备及其光催化性能[J]. 武汉大学学报(理学版), 2021, 67(1): 52-60. |
Mengyun HEI, GU Yan, PENG Qintian, et al. Preparation of BiOBr under triton X-100/n-pentanol/cyclohexane microemulsion and its photocatalytic performance[J]. Journal of Wuhan University (Natural Science Edition), 2021, 67(1): 52-60. | |
16 | GONG Yinan, WANG Ying, TANG Miaomiao, et al. A two-step process coupling photocatalysis with adsorption to treat tetracycline copper(Ⅱ) hybrid wastewaters[J]. Journal of Water Process Engineering, 2022, 47: 102710. |
17 | SUN Jianhua, ZHANG Jinshui, ZHANG Mingwen, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. |
18 | XIAO Xin, WANG Yihui, BO Qiu, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance[J]. Dalton Transactions, 2020, 49(24): 8041-8050. |
19 | Y Ashok Kumar REDDY, AJITHA B, SREEDHAR Adem, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. |
20 | FU Ze, WANG Hua, WANG Yinuo, et al. Construction of three-dimensional g-C3N4/Gr-CNTs/TiO2 Z-scheme catalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2020, 510: 145494. |
21 | CHEN Tianjun, SONG Chengjie, FAN Mingshan, et al. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12210-12219. |
22 | VILLARREAL R C, LUQUE-MORALES M, CHINCHILLAS-CHINCHILLAS M J, et al. Langmuir-Hinshelwood-Hougen-Watson model for the study of photodegradation properties of zinc oxide semiconductor nanoparticles synthetized by Peumus boldus [J]. Results in Physics, 2022, 36: 105421. |
23 | SAFAEI Javad, ULLAH Habib, MOHAMED Nurul Aida, et al. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Applied Catalysis B: Environmental, 2018, 234: 296-310. |
24 | 陈晴空. 基于·SO4 -的非均相类Fenton-光催化协同氧化体系研究[D]. 重庆: 重庆大学, 2014. |
CHEN Qingkong. Study on synergistic heterogeneous Fenton-photocatalytic oxidation system based on sulfate radicals[D]. Chongqing: Chongqing University, 2014. | |
25 | JIANG Yong, LIAO Jinfeng, CHEN Hongyan, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chem, 2020, 6(3): 766-780. |
26 | HU Xiaolin, LIU Xiang, TIAN Jian, et al. Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: Achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator[J]. Catalysis Science & Technology, 2017, 7(18): 4193-4205. |
27 | LIU Zhangsheng, WANG Jinxiang. Face-to-face BiOCl/BiO2- x heterojunction composites with highly efficient charge separation and photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 832: 153771. |
28 | MA Ran, ZHANG Sai, LI Lei, et al. Enhanced visible-light-induced photoactivity of type-Ⅱ CeO2/g-C3N4 nanosheet toward organic pollutants degradation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9699-9708. |
29 | ZHAO Wei, SHE Tiantian, ZHANG Jingyi, et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. Journal of Materials Science & Technology, 2021, 85: 18-29. |
30 | HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245. |
[1] | ZHAO Liyang, LI Qian, HE Peixi, PAN Honghui, LIU Yan, LIU Xixiang. Tetracycline adsorption properties of sludge-based biochar ball-milled co-modified by phosphomolybdic acid-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 583-595. |
[2] | ZHANG Zheng, LIU Lin, LI Zichen, WANG Mengqi, HUANG Chunyan, GE Yuanyuan. Preparation of copper-loaded geopolymer microspheres and their catalytic degradation of bisphenol S [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5290-5301. |
[3] | LUO Zhen, WANG Qingji, WANG Zhansheng, YANG Xueying, XIE Jiacai, WANG Hao. Strong oxidation coupled short range treatment of refining industry contaminated sites extraction water [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4155-4163. |
[4] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[5] | ZENG Xiangchu, MO Zhenrong, YIN Xiuju, WU Zhe. Synergistic adsorption mechanism of aqueous Cu(Ⅱ) and TC by N and S co-doped biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7004-7017. |
[6] | ZHOU Tianhong, WANG Jinyi, SU Xu, ZENG Honglin, ZHAI Tianjiao. Research progress on advanced oxidation degradation of organic pollutants in water based on spinel type CoFe2O4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6412-6427. |
[7] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
[8] | KE Yuxin, ZHU Xiaoli, SI Shaocheng, ZHANG Ting, WANG Junqiang, ZHANG Ziye. Adsorbent derived from spent bleaching earth for the synergistic removal of tetracycline and copper in wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5981-5992. |
[9] | HUANG Jiaqi, GE Yuanyuan, LI Zhili, WANG Yipin, CUI Xuemin. Preparation of biochar/geopolymer composite film and its removal of tetracycline [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 427-434. |
[10] | TANG Rui, ZHANG Hanbing, LU Caimei, LIU Kun, WANG Zhongkai, YU Sishan, TONG Zhangfa, JI Junrong. Adsorption of ciprofloxacin and tetracycline by organically modified magnetic bentonite [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6235-6245. |
[11] | Chaocheng ZHAO, Guangrui WU. Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1775-1784. |
[12] | CAO Lili, JIANG Shanqing, LING Zeyu, WANG Chuqiao, XU Xia, WANG Liping. Properties and mechanisms of tetracycline photocatalytic degradation by hydrothermal synthesis Ag-SrTiO3 in visible-light [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4500-4508. |
[13] | YE Linjing, AN Xiaoying, JIANG Yunjie, YAN Chao, GUAN Weisheng. Preparation of ZnO/CdS composite photocatalyst and its degradability on tetracycline antibiotic [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3944-3950. |
[14] | HUANG Shenglin, HE Shi, WEI Xin, XUE Gang, GAO Pin. Pollution characteristics of tetracycline residues and tetracycline resistance genes in sewage treatment plants:A review [J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1779-1785. |
[15] | CHENG Chen, YAN Zheng. Degradation of oxytetracycline in wastewater by multi-frequency ultrasonic [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 1143-1146,1164. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |