Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 427-434.DOI: 10.16085/j.issn.1000-6613.2021-0127
• Resources and environmental engineering • Previous Articles Next Articles
HUANG Jiaqi(), GE Yuanyuan(), LI Zhili, WANG Yipin, CUI Xuemin
Received:
2021-01-19
Revised:
2021-03-11
Online:
2022-01-24
Published:
2022-01-05
Contact:
GE Yuanyuan
通讯作者:
葛圆圆
作者简介:
黄嘉绮(1995—),女,硕士研究生,研究方向为环境功能材料。E-mail: 基金资助:
CLC Number:
HUANG Jiaqi, GE Yuanyuan, LI Zhili, WANG Yipin, CUI Xuemin. Preparation of biochar/geopolymer composite film and its removal of tetracycline[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 427-434.
黄嘉绮, 葛圆圆, 李志礼, 王艺频, 崔学民. 生物炭/地聚物复合膜的制备及其对四环素的去除[J]. 化工进展, 2022, 41(1): 427-434.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0127
水玻璃模数 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
1.1 | 28.34±1.7 | 0.061 | 10.59 |
1.2 | 38.13±2.2 | 0.137 | 17.49 |
1.3 | 29.10±0.9 | 0.091 | 12.75 |
1.4 | 22.93±2.5 | 0.066 | 11.65 |
1.5 | 26.38±2.1 | 0.080 | 12.38 |
水玻璃模数 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
1.1 | 28.34±1.7 | 0.061 | 10.59 |
1.2 | 38.13±2.2 | 0.137 | 17.49 |
1.3 | 29.10±0.9 | 0.091 | 12.75 |
1.4 | 22.93±2.5 | 0.066 | 11.65 |
1.5 | 26.38±2.1 | 0.080 | 12.38 |
煅烧温度/℃ | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
400 | 16.41±0.9 | 0.080 | 19.80 |
500 | 20.62±2.0 | 0.066 | 13.19 |
600 | 38.13±2.2 | 0.137 | 17.49 |
700 | 23.98±1.4 | 0.054 | 9.36 |
800 | 8.54±2.5 | 0.013 | 6.72 |
煅烧温度/℃ | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
400 | 16.41±0.9 | 0.080 | 19.80 |
500 | 20.62±2.0 | 0.066 | 13.19 |
600 | 38.13±2.2 | 0.137 | 17.49 |
700 | 23.98±1.4 | 0.054 | 9.36 |
800 | 8.54±2.5 | 0.013 | 6.72 |
样品 | 结合能/eV | C 1s键合状态 | 含量/% |
---|---|---|---|
BC | 284.6 | C sp2 | 78.1 |
286.1 | C=O | 7.69 | |
288.5 | O—C=O | 14.21 | |
BC/GM | 284.6 | C sp2 | 68.02 |
286.1 | C=O | 23.89 | |
288.6 | O—C=O | 8.09 |
样品 | 结合能/eV | C 1s键合状态 | 含量/% |
---|---|---|---|
BC | 284.6 | C sp2 | 78.1 |
286.1 | C=O | 7.69 | |
288.5 | O—C=O | 14.21 | |
BC/GM | 284.6 | C sp2 | 68.02 |
286.1 | C=O | 23.89 | |
288.6 | O—C=O | 8.09 |
1 | PRASANNAMEDHA G, KUMAR P S. A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective[J]. Journal of Cleaner Production, 2020, 250: 119553. |
2 | ZHANG K J, GU S W, WU Y, et al. Preparation of pyramidal SnO/CeO2 nano-heterojunctions with enhanced photocatalytic activity for degradation of tetracycline[J]. Nanotechnology, 2020, 31(21): 215702. |
3 | OBREGÓN S, HERNÁNDEZ-URESTI D B, VÁZQUEZ A, et al. Electrophoretic deposition of PbMoO4 nanoparticles for photocatalytic degradation of tetracycline[J]. Applied Surface Science, 2018, 457: 501-507. |
4 | AHMADI M, RAMEZANI MOTLAGH H, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63. |
5 | SHI Y Y, YANG Z W, WANG B, et al. Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O-TiO2 composite[J]. Applied Clay Science, 2016, 119: 311-320. |
6 | RODRIGUEZ-NARVAEZ O M, PERALTA-HERNANDEZ J M, GOONETILLEKE A, et al. Treatment technologies for emerging contaminants in water: a review[J]. Chemical Engineering Journal, 2017, 323: 361-380. |
7 | ZHOU J M, YU M, PENG J Y, et al. Photocatalytic degradation characteristics of tetracycline and structural transformation on bismuth silver oxide perovskite nano-catalysts[J]. Applied Nanoscience, 2020, 10(7): 2329-2338. |
8 | FRONTISTIS Z, MERIÇ S. The role of operating parameters and irradiation on the electrochemical degradation of tetracycline on boron doped diamond anode in environmentally relevant matrices[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3648-3655. |
9 | WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. |
10 | MARTINS A C, PEZOTI O, CAZETTA A L, et al. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies[J]. Chemical Engineering Journal, 2015, 260: 291-299. |
11 | AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. Science of the Total Environment, 2015, 532: 112-126. |
12 | YU J, XIONG W P, LI X, et al. Functionalized MIL-53(Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution[J]. Microporous and Mesoporous Materials, 2019, 290: 109642. |
13 | MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review[J]. Water Research, 2018, 139: 118-131. |
14 | KHAN A H, KHAN N A, AHMED S, et al. Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment[J]. Journal of Cleaner Production, 2020, 269: 122411. |
15 | CAO Y, QIU W, ZHAO Y M, et al. The degradation of chloramphenicol by O3/PMS and the impact of O3- based AOPs pre-oxidation on dichloroacetamide generation in post-chlorination[J]. Chemical Engineering Journal, 2020, 401: 126146. |
16 | OUYANG D, YAN J, QIAN L, et al. Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017, 184: 609-617. |
17 | CHEN Y, YAN J C, OUYANG D, et al. Heterogeneously catalyzed persulfate by CuMgFe layered double oxide for the degradation of phenol[J]. Applied Catalysis A: General, 2017, 538: 19-26. |
18 | CAI C, ZHANG H, ZHONG X, et al. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange Ⅱ in water[J]. Journal of Hazardous Materials, 2015, 283: 70-79. |
19 | ZENG T, LI S Q, HUA J N, et al. Synergistically enhancing Fenton-like degradation of organics by in situ transformation from Fe3O4 microspheres to mesoporous Fe,N-dual doped carbon[J]. Science of the Total Environment, 2018, 645: 550-559. |
20 | HUANG D L, LUO H, ZHANG C, et al. Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process[J]. Chemical Engineering Journal, 2019, 361: 353-363. |
21 | LUO K, YANG Q, PANG Y, et al. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2019, 374: 520-530. |
22 | WANG Y Y, DONG H R, LI L, et al. Influence of feedstocks and modification methods on biochar’s capacity to activate hydrogen peroxide for tetracycline removal[J]. Bioresource Technology, 2019, 291: 121840. |
23 | MARTIN-MARTINEZ M, BARREIRO M F F, SILVA A M T, et al. Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 219: 372-378. |
24 | BURUBERRI L H, TOBALDI D M, CAETANO A, et al. Evaluation of reactive Si and Al amounts in various geopolymer precursors by a simple method[J]. Journal of Building Engineering, 2019, 22: 48-55. |
25 | GE Y Y, YUAN Y, WANG K T, et al. Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater[J]. Journal of Hazardous Materials, 2015, 299: 711-718. |
26 | TAGHVAYI H, BEHFARNIA K, KHALILI M. The effect of alkali concentration and sodium silicate modulus on the properties of alkali-activated slag concrete[J]. Journal of Advanced Concrete Technology, 2018, 16(7): 293-305. |
27 | YU X Y, YING G G, KOOKANA R S. Reduced plant uptake of pesticides with biochar additions to soil[J]. Chemosphere, 2009, 76(5): 665-671. |
28 | OGINNI O, SINGH K. Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104169. |
29 | GE Y Y, CUI X M, KONG Y, et al. Porous geopolymeric spheres for removal of Cu(Ⅱ) from aqueous solution: synthesis and evaluation[J]. Journal of Hazardous Materials, 2015, 283: 244-251. |
30 | CATAURO M, BOLLINO F, PAPALE F, et al. Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer[J]. Materials Science and Engineering C, 2014, 36: 20-24. |
31 | MER K, SAJJADI B, EGIEBOR N O, et al. Enhanced degradation of organic contaminants using catalytic activity of carbonaceous structures: a strategy for the reuse of exhausted sorbents[J]. Journal of Environmental Sciences, 2021, 99: 267-273. |
32 | YE S J, YAN M, TAN X F, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light[J]. Applied Catalysis B: Environmental, 2019, 250: 78-88. |
33 | 王永胜, 兰小林, 邱天, 等. 铜基石墨烯复合催化剂的合成与表征[J]. 化工学报, 2020, 71(6): 2889-2899. |
WANG Yongsheng, LAN Xiaolin, QIU Tian, et al. Synthesis and characterization of copper-based graphene composite catalyst[J]. CIESC Journal, 2020, 71(6): 2889-2899. | |
34 | FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation[J]. Environmental Science & Technology, 2014, 48(3): 1902-1910. |
35 | YADAV A L, SAIRAM V, SRINIVASAN K, et al. Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash[J]. Construction and Building Materials, 2020, 258: 119231. |
36 | XU R K, XIAO S C, YUAN J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues[J]. Bioresource Technology, 2011, 102(22): 10293-10298. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[3] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[4] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[5] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[6] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[7] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[8] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[9] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[10] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[11] | GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425. |
[12] | CAO Min, MAO Yujiao, WANG Qianqian, LI Sha, YAN Xiaoliang. Sintering mechanism and sintering-resistant strategies for metal-based catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 744-755. |
[13] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[14] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[15] | HU Zhaoyan, ZHANG Jingxin, HE Yiliang. Catalytic pyrolysis of polypropylene plastics and product properties with Fe-loaded sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 631-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |