Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 1039-1050.DOI: 10.16085/j.issn.1000-6613.2022-0664
• Resources and environmental engineering • Previous Articles Next Articles
WANG Yu1,2(), YU Guangwei1,3(), LIN Jiajia1,2, LI Changjiang1,4, JIANG Ruqing1, XING Zhenjiao1, YU Cheng5
Received:
2022-04-14
Revised:
2022-06-28
Online:
2023-03-13
Published:
2023-02-25
Contact:
YU Guangwei
王玉1,2(), 余广炜1,3(), 林佳佳1,2, 黎长江1,4, 江汝清1, 邢贞娇1, 余铖5
通讯作者:
余广炜
作者简介:
王玉(1996—),男,硕士研究生,研究方向为固体废弃物资源化利用与污染物控制。E-mail:yuwang@iue.ac.cn。
基金资助:
CLC Number:
WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050.
王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0664
温度/℃ | 0∶100% | 25%∶75% | 50%∶50% | 75%∶25% | 100%∶0 |
---|---|---|---|---|---|
1050 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1100 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1150 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC010-1050 |
1200 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1250 | DFC00-1250 | DFC25-1250 | DFC50-1250 | DFC75-1250 | DFC100-1250 |
1300 | DFC00-1300 | DFC25-1300 | DFC50-1300 | DFC75-1300 | DFC100-1300 |
温度/℃ | 0∶100% | 25%∶75% | 50%∶50% | 75%∶25% | 100%∶0 |
---|---|---|---|---|---|
1050 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1100 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1150 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC010-1050 |
1200 | DFC00-1050 | DFC25-1050 | DFC50-1050 | DFC75-1050 | DFC100-1050 |
1250 | DFC00-1250 | DFC25-1250 | DFC50-1250 | DFC75-1250 | DFC100-1250 |
1300 | DFC00-1300 | DFC25-1300 | DFC50-1300 | DFC75-1300 | DFC100-1300 |
序号 | 形态 | 实验步骤 |
---|---|---|
F1 | 弱酸提取态 | 称取0.500g过100目干燥样品于50mL离心管中,加入20mL 0.11mol/L的乙酸溶液,在25℃、200r/min的条件下震荡16h后离心(8000r/min)20min,过滤、定容存于4℃保存待测 |
F2 | 可还原态 | 取上一步样品在75℃干燥至近干后加入20mL 0.5mol/L的氯化羟铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F3 | 可氧化态 | 取上一步样品在75℃干燥后加入5mL 30%的H2O2溶液(为防止反应过于激烈,分两次加入),静置1h后在85℃条件下静置1h,然后再加入5mL H2O2同样在85℃条件下待近干后加入25mL浓度为1mol/L的乙酸铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F4 | 残渣态 | 取上一步残留样品干燥后进行消解,消解过程与重金属总量测试相同 |
序号 | 形态 | 实验步骤 |
---|---|---|
F1 | 弱酸提取态 | 称取0.500g过100目干燥样品于50mL离心管中,加入20mL 0.11mol/L的乙酸溶液,在25℃、200r/min的条件下震荡16h后离心(8000r/min)20min,过滤、定容存于4℃保存待测 |
F2 | 可还原态 | 取上一步样品在75℃干燥至近干后加入20mL 0.5mol/L的氯化羟铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F3 | 可氧化态 | 取上一步样品在75℃干燥后加入5mL 30%的H2O2溶液(为防止反应过于激烈,分两次加入),静置1h后在85℃条件下静置1h,然后再加入5mL H2O2同样在85℃条件下待近干后加入25mL浓度为1mol/L的乙酸铵溶液,与上一步同样条件下震荡、离心、过滤、定容后存于4℃保存待测 |
F4 | 残渣态 | 取上一步残留样品干燥后进行消解,消解过程与重金属总量测试相同 |
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险系数 | IR | 潜在生态风险程度 |
---|---|---|---|---|---|
Cf≤1 | 极低 | Er≤40 | 低 | IR≤150 | 轻微 |
1<Cf≤3 | 低 | 40<Er≤80 | 中 | 150<IR≤300 | 中等 |
3<Cf≤6 | 中 | 80<Er≤160 | 较高 | 300<IR≤600 | 较高 |
6<Cf≤9 | 较高 | 160<Er≤320 | 高 | IR>600 | 高 |
Cf>9 | 高 | Er>320 | 很高 |
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险系数 | IR | 潜在生态风险程度 |
---|---|---|---|---|---|
Cf≤1 | 极低 | Er≤40 | 低 | IR≤150 | 轻微 |
1<Cf≤3 | 低 | 40<Er≤80 | 中 | 150<IR≤300 | 中等 |
3<Cf≤6 | 中 | 80<Er≤160 | 较高 | 300<IR≤600 | 较高 |
6<Cf≤9 | 较高 | 160<Er≤320 | 高 | IR>600 | 高 |
Cf>9 | 高 | Er>320 | 很高 |
样品 | 工业分析质量分数/% | 元素分析质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | C | H | N | S | H/C | N/C | |
DR | 53.17 | 45.25 | 1.58 | 17.57 | 2.43 | 2.37 | 1.19 | 1.66 | 0.12 |
FA | 85.41 | 11.08 | 3.51 | 2.21 | 0.04 | 0.30 | 3.30 | 0.22 | 0.12 |
DFC | 95.91 | 3.72 | 0.37 | 9.70 | 0.91 | 0.47 | 1.19 | 1.13 | 0.04 |
SSC | 90.17 | 5.70 | 4.13 | 3.15 | 0.81 | 0.01 | 0.72 | 3.09 | 0.00 |
样品 | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO |
DR | 1.16 | 2.22 | 2.5 | 2.19 | 9.50 | 3.67 | 0.78 | 0.56 | 36.53 |
FA | 13.20 | 1.06 | 1.17 | 4.86 | 0.46 | 7.07 | 25.84 | 5.60 | 36.90 |
DFC | 2.12 | 2.02 | 2.54 | 3.52 | 10.72 | 4.33 | 6.57 | 1.57 | 48.39 |
SSC | 1.59 | 8.55 | 15.94 | 23.57 | 0.22 | 0.40 | 1.00 | 1.05 | 6.87 |
样品 | 工业分析质量分数/% | 元素分析质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | C | H | N | S | H/C | N/C | |
DR | 53.17 | 45.25 | 1.58 | 17.57 | 2.43 | 2.37 | 1.19 | 1.66 | 0.12 |
FA | 85.41 | 11.08 | 3.51 | 2.21 | 0.04 | 0.30 | 3.30 | 0.22 | 0.12 |
DFC | 95.91 | 3.72 | 0.37 | 9.70 | 0.91 | 0.47 | 1.19 | 1.13 | 0.04 |
SSC | 90.17 | 5.70 | 4.13 | 3.15 | 0.81 | 0.01 | 0.72 | 3.09 | 0.00 |
样品 | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO |
DR | 1.16 | 2.22 | 2.5 | 2.19 | 9.50 | 3.67 | 0.78 | 0.56 | 36.53 |
FA | 13.20 | 1.06 | 1.17 | 4.86 | 0.46 | 7.07 | 25.84 | 5.60 | 36.90 |
DFC | 2.12 | 2.02 | 2.54 | 3.52 | 10.72 | 4.33 | 6.57 | 1.57 | 48.39 |
SSC | 1.59 | 8.55 | 15.94 | 23.57 | 0.22 | 0.40 | 1.00 | 1.05 | 6.87 |
样品 | Cl/% | SO3/% |
---|---|---|
DFC00-1050 | 0.001 | 0.125 |
DFC00-1100 | 0.000 | 0.569 |
DFC25-1050 | 0.001 | 0.090 |
DFC25-1100 | 0.000 | 0.569 |
DFC25-1150 | 0.001 | 0.515 |
DFC50-1200 | 0.001 | 0.409 |
DFC50-1250 | 0.001 | 0.323 |
DFC75-1300 | 0.002 | 0.688 |
DFC100-1300 | 0.030 | 1.414 |
样品 | Cl/% | SO3/% |
---|---|---|
DFC00-1050 | 0.001 | 0.125 |
DFC00-1100 | 0.000 | 0.569 |
DFC25-1050 | 0.001 | 0.090 |
DFC25-1100 | 0.000 | 0.569 |
DFC25-1150 | 0.001 | 0.515 |
DFC50-1200 | 0.001 | 0.409 |
DFC50-1250 | 0.001 | 0.323 |
DFC75-1300 | 0.002 | 0.688 |
DFC100-1300 | 0.030 | 1.414 |
样品 | 重金属浸出量/mg·L-1 | |||||
---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | |
DFC00-1050 | 0.003 | 1.060 | 17.572 | 10.971 | 0.040 | 0.000 |
DFC00-1100 | 0.361 | 0.033 | 0.304 | 1.129 | 0.078 | 0.000 |
DFC25-1050 | 0.003 | 0.857 | 6.257 | 7.988 | 0.033 | 0.000 |
DFC25-1100 | 0.135 | 0.229 | 3.057 | 2.989 | 0.102 | 0.000 |
DFC25-1150 | 0.058 | 0.291 | 3.142 | 2.350 | 0.106 | 0.000 |
DFC50-1200 | 0.051 | 0.122 | 0.464 | 1.362 | 0.042 | 0.000 |
DFC50-1250 | 0.010 | 0.053 | 1.636 | 0.883 | 0.033 | 0.000 |
DFC75-1300 | 0.614 | 0.074 | 0.172 | 1.042 | 0.114 | 0.000 |
DFC100-1300 | 0.483 | 0.004 | 0.000 | 0.014 | 0.008 | 0.000 |
阈值 | 15 | 5 | 100 | 100 | 5 | 5 |
样品 | 重金属浸出量/mg·L-1 | |||||
---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | |
DFC00-1050 | 0.003 | 1.060 | 17.572 | 10.971 | 0.040 | 0.000 |
DFC00-1100 | 0.361 | 0.033 | 0.304 | 1.129 | 0.078 | 0.000 |
DFC25-1050 | 0.003 | 0.857 | 6.257 | 7.988 | 0.033 | 0.000 |
DFC25-1100 | 0.135 | 0.229 | 3.057 | 2.989 | 0.102 | 0.000 |
DFC25-1150 | 0.058 | 0.291 | 3.142 | 2.350 | 0.106 | 0.000 |
DFC50-1200 | 0.051 | 0.122 | 0.464 | 1.362 | 0.042 | 0.000 |
DFC50-1250 | 0.010 | 0.053 | 1.636 | 0.883 | 0.033 | 0.000 |
DFC75-1300 | 0.614 | 0.074 | 0.172 | 1.042 | 0.114 | 0.000 |
DFC100-1300 | 0.483 | 0.004 | 0.000 | 0.014 | 0.008 | 0.000 |
阈值 | 15 | 5 | 100 | 100 | 5 | 5 |
样品 | Cf | Er | RI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | Cr | Ni | Cu | Zn | As | Pb | |||
DFC00-1050 | 0.00 | 0.15 | 0.33 | 0.37 | 0.11 | 0.03 | 0.00 | 0.90 | 1.64 | 0.37 | 1.09 | 0.14 | 4.13 | |
DFC00-1100 | 0.01 | 0.01 | 0.02 | 0.28 | 0.13 | 0.00 | 0.02 | 0.04 | 0.09 | 0.28 | 1.28 | 0.00 | 1.71 | |
DFC25-1050 | 0.00 | 0.14 | 0.21 | 0.06 | 0.10 | 0.00 | 0.00 | 0.85 | 1.05 | 0.06 | 0.95 | 0.02 | 2.93 | |
DFC25-1100 | 0.00 | 0.04 | 0.41 | 0.04 | 0.12 | 0.01 | 0.00 | 0.21 | 2.05 | 0.04 | 1.16 | 0.07 | 3.53 | |
DFC25-1150 | 0.00 | 0.03 | 0.27 | 0.01 | 0.08 | 0.01 | 0.00 | 0.20 | 1.33 | 0.01 | 0.79 | 0.07 | 2.40 | |
DFC50-1200 | 0.01 | 0.05 | 0.10 | 0.01 | 0.08 | 0.00 | 0.03 | 0.28 | 0.49 | 0.01 | 0.75 | 0.00 | 1.56 | |
DFC50-1250 | 0.00 | 0.01 | 0.23 | 0.01 | 0.05 | 0.02 | 0.00 | 0.03 | 1.16 | 0.01 | 0.54 | 0.08 | 1.83 | |
DFC75-1300 | 0.08 | 0.10 | 0.05 | 0.02 | 0.10 | 0.00 | 0.17 | 0.60 | 0.25 | 0.02 | 1.05 | 0.01 | 2.09 | |
DFC100-1300 | 0.04 | 0.11 | 0.09 | 0.35 | 0.05 | 0.00 | 0.09 | 0.68 | 0.45 | 0.35 | 0.52 | 0.00 | 2.08 |
样品 | Cf | Er | RI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | As | Pb | Cr | Ni | Cu | Zn | As | Pb | |||
DFC00-1050 | 0.00 | 0.15 | 0.33 | 0.37 | 0.11 | 0.03 | 0.00 | 0.90 | 1.64 | 0.37 | 1.09 | 0.14 | 4.13 | |
DFC00-1100 | 0.01 | 0.01 | 0.02 | 0.28 | 0.13 | 0.00 | 0.02 | 0.04 | 0.09 | 0.28 | 1.28 | 0.00 | 1.71 | |
DFC25-1050 | 0.00 | 0.14 | 0.21 | 0.06 | 0.10 | 0.00 | 0.00 | 0.85 | 1.05 | 0.06 | 0.95 | 0.02 | 2.93 | |
DFC25-1100 | 0.00 | 0.04 | 0.41 | 0.04 | 0.12 | 0.01 | 0.00 | 0.21 | 2.05 | 0.04 | 1.16 | 0.07 | 3.53 | |
DFC25-1150 | 0.00 | 0.03 | 0.27 | 0.01 | 0.08 | 0.01 | 0.00 | 0.20 | 1.33 | 0.01 | 0.79 | 0.07 | 2.40 | |
DFC50-1200 | 0.01 | 0.05 | 0.10 | 0.01 | 0.08 | 0.00 | 0.03 | 0.28 | 0.49 | 0.01 | 0.75 | 0.00 | 1.56 | |
DFC50-1250 | 0.00 | 0.01 | 0.23 | 0.01 | 0.05 | 0.02 | 0.00 | 0.03 | 1.16 | 0.01 | 0.54 | 0.08 | 1.83 | |
DFC75-1300 | 0.08 | 0.10 | 0.05 | 0.02 | 0.10 | 0.00 | 0.17 | 0.60 | 0.25 | 0.02 | 1.05 | 0.01 | 2.09 | |
DFC100-1300 | 0.04 | 0.11 | 0.09 | 0.35 | 0.05 | 0.00 | 0.09 | 0.68 | 0.45 | 0.35 | 0.52 | 0.00 | 2.08 |
1 | 国家统计局. 全国大、中城市固体废物污染环境防治年报[J]. 中国统计年鉴, 2020. |
National Bureau of Statistics. Annual report on environmental prevention and control of solid waste pollution in large and medium-sized cities[J]. China Statistical Yearbook, 2020. | |
2 | 王晓君, 温文霞, 潘松青, 等. 辅料比例对餐厨垃圾好氧堆肥及微生物特性的影响[J]. 环境工程学报, 2016, 10(6): 3215-3222. |
WANG Xiaojun, WEN Wenxia, PAN Songqing, et al. Influence of conditioner proportion on aerobic composting of food waste and microbial characteristics[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3215-3222. | |
3 | 王蕊, 邰俊, 赵由才, 等. 餐厨垃圾资源化衍生品的堆肥中试实验[J]. 环境工程学报, 2021, 15(9): 3012-3019. |
WANG Rui, TAI Jun, ZHAO Youcai, et al. Pilot plant test of composting for food waste resource derivatives[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3012-3019. | |
4 | 张黎阳. 餐厨垃圾厌氧消化后沼渣的好氧堆肥优化研究[D]. 杭州: 浙江大学, 2020. |
ZHANG Liyang. Study on optimization of compost of food waste anaerobic digestion residue[D]. Hangzhou: Zhejiang University, 2020. | |
5 | SONG Shuang, Jun Wei LIM, LEE Jonathan T E, et al. Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue[J]. Waste Management (New York, N Y), 2021, 136: 143-152. |
6 | BUSTAMANTE M A, RESTREPO A P, ALBURQUERQUE J A, et al. Recycling of anaerobic digestates by composting: Effect of the bulking agent used[J]. Journal of Cleaner Production, 2013, 47: 61-69. |
7 | KRATZEISEN Martin, STARCEVIC Nikica, MARTINOV Milan, et al. Applicability of biogas digestate as solid fuel[J]. Fuel, 2010, 89(9): 2544-2548. |
8 | 雷赵民, 窦学诚, 张浩, 等. 饲料中添加沼渣对猪的肥育效果及经济效益评价[J]. 甘肃农业大学学报, 2008, 43(4): 51-54. |
LEI Zhaomin, DOU Xuecheng, ZHANG Hao, et al. Effect of biogas residue on fattening performance of pigs and its economic benefit[J]. Journal of Gansu Agricultural University, 2008, 43(4): 51-54. | |
9 | 李佳, 张思奇, 倪文, 等. 垃圾焚烧飞灰的固化及综合利用研究进展[J]. 金属矿山, 2019(12): 182-187. |
LI Jia, ZHANG Siqi, NI Wen, et al. Research progress on solidification and comprehensive utilization of MSWI fly ash[J]. Metal Mine, 2019(12): 182-187. | |
10 | SUN Yuehui, LI Jiangshan, CHEN Zhen, et al. Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization[J]. Construction and Building Materials, 2021, 287: 122993. |
11 | QIN Juan, CUI Chong, CUI Xiaoyu, et al. Preparation and characterization of ceramsite from lime mud and coal fly ash[J]. Construction and Building Materials, 2015, 95: 10-17. |
12 | MI Hongcheng, YI Longsheng, WU Qian, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite[J]. Ceramics International, 2021, 47(13): 18218-18229. |
13 | 林佳佳, 邹晓燕, 王玉, 等. 污泥辅助飞灰水热-热解处置产物制备陶粒[J]. 环境工程学报, 2021, 15(8): 2730-2739. |
LIN Jiajia, ZOU Xiaoyan, WANG Yu, et al. Preparation of ceramsites with fly ash originated from sewage sludge-assisted hydrothermal coupled pyrolysis process[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2730-2739. | |
14 | 李杰, 潘兰佳, 余广炜, 等. 污泥生物炭制备吸附陶粒[J]. 环境科学, 2017, 38(9): 3970-3978. |
LI Jie, PAN Lanjia, YU Guangwei, et al. Preparation of adsorption ceramsite derived from sludge biochar[J]. Environmental Science, 2017, 38(9): 3970-3978. | |
15 | CHEN Zhan, YU Guangwei, WANG Yin, et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process[J]. Waste Management (New York, N Y), 2020, 109: 28-37. |
16 | CHEN Zhan, YU Guangwei, ZOU Xiaoyan, et al. Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification[J]. Chemosphere, 2020, 260: 127632. |
17 | WANG Yu, YU Guangwei, LIN Jiajia, et al. Synergistic hydrothermal treatment of food waste digestate residues and incineration fly ash: Dehydration performance and heavy metals safety[J]. Reaction Chemistry & Engineering, 2022, 7(8): 1797-1806. |
18 | 王兴栋, 张斌, 余广炜, 等. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报, 2016, 67(11): 4808-4816. |
WANG Xingdong, ZHANG Bin, YU Guangwei, et al. Preparation of biochar with different particle sized sewage sludge and its characteristics[J]. CIESC Journal, 2016, 67(11): 4808-4816. | |
19 | LI Jie, YU Guangwei, XIE Shengyu, et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar[J]. Science of the Total Environment, 2018, 628: 131-140. |
20 | HUANG Huajun, YUAN Xingzhong. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresource Technology, 2016, 200: 991-998. |
21 | 王玉, 余广炜, 江汝清, 等. 粒径对餐厨沼渣热解制备生物炭中磷和重金属的影响[J]. 化工学报, 2021, 72(10): 5344-5353. |
WANG Yu, YU Guangwei, JIANG Ruqing, et al. Effect of particle size on phosphorus and heavy metals during the preparation of biochar from food waste biogas residue[J]. CIESC Journal, 2021, 72(10): 5344-5353. | |
22 | Chanaka Udayanga W D, VEKSHA Andrei, GIANNIS Apostolos, et al. Insights into the speciation of heavy metals during pyrolysis of industrial sludge[J]. The Science of the Total Environment, 2019, 691: 232-242. |
23 | 岳敏, 岳钦艳, 李仁波, 等. 城市污水厂污泥制备陶粒滤料及其特性[J]. 过程工程学报, 2008, 8(5): 972-977. |
YUE Min, YUE Qinyan, LI Renbo, et al. Preparation and characterization of keramzite from municipal sewage sludge[J]. The Chinese Journal of Process Engineering, 2008, 8(5): 972-977. | |
24 | LI Chunxing, XIE Shengyu, WANG Yu, et al. Multi-functional biochar preparation and heavy metal immobilization by co-pyrolysis of livestock feces and biomass waste[J]. Waste Management (New York, N Y), 2021, 134: 241-250. |
25 | XIE Shengyu, YU Guangwei, LI Chunxing, et al. Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge[J]. Environmental Science and Pollution Research, 2019, 26(16): 16537-16547. |
26 | XIE Shengyu, YU Guangwei, LI Chunxing, et al. Treatment of high-ash industrial sludge for producing improved char with low heavy metal toxicity[J]. Journal of Analytical and Applied Pyrolysis, 2020, 150: 104866. |
27 | RILEY Charles M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34(4): 121-128. |
28 | 刘亚东, 杨鼎宜, 贾宇婷, 等. 超轻污泥陶粒的研制及其内部结构特征分析[J]. 混凝土, 2014(6): 65-68. |
LIU Yadong, YANG Dingyi, JIA Yuting, et al. Preparation of ultra-lightweight sludge ceramsite and analysis of its inner-structure characteristics[J]. Concrete, 2014(6): 65-68. | |
29 | CHEN Tao, YAN Bo. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge[J]. Waste Management, 2012, 32(5): 957-964. |
30 | WANG Xuexue, JI Guozhao, ZHU Kongyun, et al. Integrated thermal behavior and compounds transition mechanism of municipal solid waste incineration fly ash during thermal treatment process[J]. Chemosphere, 2021, 264: 128406. |
31 | CRANNELL Bradley S, Taylor EIGHMY T, KRZANOWSKI James E, et al. Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate[J]. Waste Management, 2000, 20(2/3): 135-148. |
32 | NZIHOU Ange, SHARROCK Patrick. Calcium phosphate stabilization of fly ash with chloride extraction[J]. Waste Management, 2002, 22(2): 235-239. |
33 | 杨珊珊. 城市污水处理厂污泥固化及制备陶粒初探[D]. 北京: 北京工业大学, 2015. |
YANG Shanshan. Sewage sludge curing experiment and preparation of ceramsite[D]. Beijing: Beijing University of Technology, 2015. | |
34 | XU G R, ZOU J L, LI G B. Effect of sintering temperature on the characteristics of sludge ceramsite[J]. Journal of Hazardous Materials, 2008, 150(2): 394-400. |
35 | ZHAO Hailong, LIU Fang, LIU Hanqiao, et al. Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China[J]. Waste Management (New York, N Y), 2020, 113: 447-455. |
36 | ZHAO Lina, HU Min, MUSLIM Halimi, et al. Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production[J]. Chemosphere, 2022, 287(Pt 2): 132145. |
37 | WANG Kuen-Sheng, CHIANG Kung-Yuh, LIN Shin-Ming, et al. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8): 1833-1849. |
38 | LU Peng, HUANG Qunxing, BOURTSALAS A C, et al. Review on fate of chlorine during thermal processing of solid wastes[J]. Journal of Environmental Sciences, 2019, 78: 13-28. |
39 | 李惠娴, 李寿德, 杨寰宇, 等. 同心聚力共谋行业绿色发展(二)——2021年陶粒产业调研报告[J]. 砖瓦, 2021(12): 51-56. |
LI Huixian, LI Shoude, YANG Huanyu, et al. 2021 ceramsite industry research report(Ⅱ)[J]. Brick-Tile, 2021(12): 51-56. |
[1] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[2] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[3] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[4] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
[5] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[6] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
[7] | TANG Chaochun, WANG Shunteng, HUANG Congxin, FENG Wentao, RUAN Yixuan, SHI Chunjing. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278. |
[8] | FU Jie, QIU Chunsheng, WANG Chenchen, ZHENG Jinxin, LIU Nannan, WANG Dong, WANG Shaopo, SUN Liping. Migration, transformation and risk assessment of heavy metals in municipal sludge treated by thermal hydrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2216-2225. |
[9] | WEN Qianmin, QIN Yongli, ZHENG Junjian, WEI Qiaoyan, ZHANG Yuanyuan, JIANG Yongrong. Research advances in the fixation of heavy metals in acid mine wastewater by sulfate reducing bacteria [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5578-5587. |
[10] | HUANG Congxin, WANG Shunteng, FAN Yuying, JIAN Meipeng, TANG Chaochun, LIU Ruiping. Advance of ultrathin 2D porous nanosheets in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6859-6875. |
[11] | ZHU Zihan, CHEN Weihua, HUA Yinfeng, ZHANG Haitao, ZHAO Youcai, GUO Yanyan, DAI Shijin. Research progress and consideration on medicament stabilization of heavy metals in waste incineration fly ash [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6358-6368. |
[12] | Bin XU, Changxuan HE, Yanjun HU, Linjie WANG, Yonghao ZHU, Xin QIAO. [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 406-412. |
[13] | Yangyang MA, Zhaoping ZHONG, Xudong LAI. Enrichment of heavy metals during coal combustion by mineral additives [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2479-2486. |
[14] | Dong YU, Qing LUO, Wei SU, Liangliang WANG, Yuwei SUN, Zhongguo ZHANG. A review on research and application of electrodeposition for heavy metal wastewater treatment [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1938-1949. |
[15] | Yan WANG,Ning ZUO,Yuanyuan JIANG,Fangyuan CHEN. Behavior and environmental effects of nitrogen and sulfur in sludge biochar [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1539-1549. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |