Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 1028-1038.DOI: 10.16085/j.issn.1000-6613.2022-0689
• Resources and environmental engineering • Previous Articles Next Articles
CHEN Shuhui(), WU Yue, ZHANG Wenxiang, WANG Shanshan, MA Heping()
Received:
2022-04-18
Revised:
2022-06-09
Online:
2023-03-13
Published:
2023-02-25
Contact:
MA Heping
通讯作者:
马和平
作者简介:
陈姝晖(1981—),女,博士研究生,研究方向为多孔材料的制备及工业应用。E-mail:applechen2018@stu.xjtu.edu.cn。
基金资助:
CLC Number:
CHEN Shuhui, WU Yue, ZHANG Wenxiang, WANG Shanshan, MA Heping. Preparation of ionic organic porous polymer and its coupled desulfurization and decarbonization properties in flue gas[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1028-1038.
陈姝晖, 伍岳, 张文祥, 王闪闪, 马和平. 离子型有机多孔聚合物的制备及其烟气脱硫耦合脱碳性质[J]. 化工进展, 2023, 42(2): 1028-1038.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0689
材料 | SO2吸附量/mmol·g-1 | CO2吸附量/mmol·g-1 | N2吸附量/mmol·g-1 | |||||
---|---|---|---|---|---|---|---|---|
273K | 298K | 308K | 323K | 273K | 298K | 273K | 298K | |
PPN-1 | 17.01 | 10.38 | 9.64 | 9.37 | 3.99 | 2.68 | 0.27 | 0.18 |
PPN-1-OH | 17.89 | 13.09 | 11.16 | 10.22 | 3.87 | 2.60 | 0.27 | 0.15 |
材料 | SO2吸附量/mmol·g-1 | CO2吸附量/mmol·g-1 | N2吸附量/mmol·g-1 | |||||
---|---|---|---|---|---|---|---|---|
273K | 298K | 308K | 323K | 273K | 298K | 273K | 298K | |
PPN-1 | 17.01 | 10.38 | 9.64 | 9.37 | 3.99 | 2.68 | 0.27 | 0.18 |
PPN-1-OH | 17.89 | 13.09 | 11.16 | 10.22 | 3.87 | 2.60 | 0.27 | 0.15 |
1 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
2 | LUCAS Francisco W S, Gary GRIM R, TACEY Sean A, et al. Electrochemical routes for the valorization of biomass-derived feedstocks: From chemistry to application[J]. ACS Energy Letters, 2021, 6(4): 1205-1270. |
3 | NOVOTNIK Breda, NANDY Arpita, VENKATESAN Senthil Velan, et al. Can fossil fuel energy be recovered and used without any CO2 emissions to the atmosphere?[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 217-240. |
4 | LIU Songtao, HAO Hongke, JIA Wenbo, et al. Effects of ultralow-emission retrofitting on mercury emission from a coal-fired power plant[J]. Energy & Fuels, 2020, 34(6): 7502-7508. |
5 | ZHANG Yan, ZHANG Peixin, YU Weikang, et al. Highly selective and reversible sulfur dioxide adsorption on a microporous metal-organic framework via polar sites[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10680-10688. |
6 | HASHEMI Ali, PAJOUM SHARIATI Farshid, SOHANI Elnaz, et al. CO2 biofixation by Synechococcus elongatus from the power plant flue gas under various light-dark cycles[J]. Clean Technologies and Environmental Policy, 2020, 22(8): 1735-1743. |
7 | LI Xiaosen, ZHAN Hao, XU Chungang, et al. Effects of tetrabutyl-(ammonium/phosphonium) salts on clathrate hydrate capture of CO2 from simulated flue gas[J]. Energy & Fuels, 2012, 26(4): 2518-2527. |
8 | SHEKHAH Osama, BELMABKHOUT Youssef, CHEN Zhijie, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[J]. Nature Communications, 2014, 5: 4228. |
9 | WANG Yuxuan, ZHANG Qian, HE Kebin, et al. Sulfate-nitrate-ammonium aerosols over China: Response to 2000—2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia[J]. Atmospheric Chemistry and Physics, 2013, 13: 2635-2652. |
10 | HAN Xue, YANG Sihai, Martin SCHRÖDER. Porous metal-organic frameworks as emerging sorbents for clean air[J]. Nature Reviews Chemistry, 2019, 3(2): 108-118. |
11 | Jonghun LIM, CHOI Yeongryeol, KIM Geonyeol, et al. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone[J]. Korean Journal of Chemical Engineering, 2020, 37(12): 2085-2093. |
12 | YANG Lifeng, QIAN Siheng, WANG Xiaobing, et al. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
13 | WANG Jun, ZHANG Yan, ZHANG Peixin, et al. Optimizing pore space for flexible-robust metal-organic framework to boost trace acetylene removal[J]. Journal of the American Chemical Society, 2020, 142(21): 9744-9751. |
14 | XIAO Jing, SONG Chunshan, MA Xiaoliang, et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3436-3443. |
15 | YI Honghong, WANG Zhixiang, LIU Haiyan, et al. Adsorption of SO2, NO, and CO2 on activated carbons: equilibrium and thermodynamics[J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1556-1563. |
16 | CHEN Xi, SHEN Benxian, SUN Hui, et al. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas: Experimental and computational investigations[J]. Microporous and Mesoporous Materials, 2018, 261: 227-236. |
17 | LIAO Junjie, ZHANG Yunfei, FAN Lijun, et al. Insight into the acid sites over modified NaY zeolite and their adsorption mechanisms for thiophene and benzene[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4572-4580. |
18 | HUO Quan, LI Jianshu, QI Xiaoran, et al. Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization[J]. Chemical Engineering Journal, 2019, 378: 122106. |
19 | CHEN Fuqiang, LAI Dan, GUO Lidong, et al. Deep desulfurization with record SO2 adsorption on the metal-organic frameworks[J]. Journal of the American Chemical Society, 2021, 143(24): 9040-9047. |
20 | GRAPE Erik Svensson, Gabriel FLORES J, HIDALGO Tania, et al. A robust and biocompatible bismuth ellagate MOF synthesized under green ambient conditions[J]. Journal of the American Chemical Society, 2020, 142(39): 16795-16804. |
21 | SUO Xian, YU Ying, QIAN Siheng, et al. Tailoring the pore size and chemistry of ionic ultramicroporous polymers for trace sulfur dioxide capture with high capacity and selectivity[J]. Angewandte Chemie International Edition, 2021, 60(13): 6986-6991. |
22 | BRANDT Philipp, NUHNEN Alexander, LANGE Marcus, et al. Metal-organic frameworks with potential application for SO2 separation and flue gas desulfurization[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17350-17358. |
23 | MA Heping, LIU Bailing, LI Bin, et al. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction[J]. Journal of the American Chemical Society, 2016, 138(18): 5897-5903. |
24 | RAMEZANIPOUR PENCHAH Hamid, GHAEMI Ahad, GANADZADEH GILANI Hossein. Benzene-based hyper-cross-linked polymer with enhanced adsorption capacity for CO2 capture[J]. Energy & Fuels, 2019, 33(12): 12578-12586. |
25 | LI Lina, CAI Kun, WANG Pengyuan, et al. Construction of sole benzene ring porous aromatic frameworks and their high adsorption properties[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 201-208. |
26 | CHEN Tongfan, ZHANG Wenxiang, LI Bin, et al. Adsorptive separation of aromatic compounds from alkanes by π-π interactions in a carbazole-based conjugated microporous polymer[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56385-56392. |
27 | FU Yu, WANG Zhiqiang, LI Sizhe, et al. Functionalized covalent triazine frameworks for effective CO2 and SO2 removal[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36002-36009. |
28 | RABBANI Mohammad Gulam, ISLAMOGLU Timur, EL-KADERI Hani M. Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation[J]. Journal of Materials Chemistry A, 2017, 5(1): 258-265. |
29 | WU Linbo, AN Dong, DONG Jie, et al. Preparation and SO2 absorption/desorption properties of crosslinked poly(1,1,3,3-tetramethylguanidine acrylate) porous particles[J]. Macromolecular Rapid Communications, 2006, 27(22): 1949-1954. |
30 | DENG Hua, YI Honghong, TANG Xiaolong, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites[J]. Chemical Engineering Journal, 2012, 188: 77-85. |
31 | CUI Xili, YANG Qiwei, YANG Lifeng, et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials[J]. Advanced Materials, 2017, 29(28): 1606929. |
32 | CARTER Joseph H, HAN Xue, MOREAU Florian Y, et al. Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal-organic framework[J]. Journal of the American Chemical Society, 2018, 140(46): 15564-15567. |
33 | YANG Sihai, LIU Leifeng, SUN Junliang, et al. Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide[J]. Journal of the American Chemical Society, 2013, 135(13): 4954-4957. |
34 | LI Guiyang, WANG Zhonggang. Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors[J]. Macromolecules, 2013, 46(8): 3058-3066. |
35 | SEKIZKARDES Ali Kemal, ALTARAWNEH Suha, KAHVECI Zafer, et al. Highly selective CO2 capture by triazine-based benzimidazole-linked polymers[J]. Macromolecules, 2014, 47(23): 8328-8334. |
36 | ARAB Pezhman, RABBANI Mohammad Gulam, SEKIZKARDES Ali Kemal, et al. Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture[J]. Chemistry of Materials, 2014, 26(3): 1385-1392. |
37 | Aysu YURDUŞEN, Yuda YÜRÜM. A controlled synthesis strategy to enhance the CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14058-14072. |
38 | CMARIK Gregory E, KIM Min, COHEN Seth M, et al. Tuning the adsorption properties of UiO-66 via ligand functionalization[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(44): 15606-15613. |
39 | SMITH Gemma L, EYLEY Jennifer E, HAN Xue, et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites[J]. Nature Materials, 2019, 18(12): 1358-1365. |
40 | SAVAGE Mathew, CHENG Yongqiang, EASUN Timothy L, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material[J]. Advanced Materials, 2016, 28(39): 8705-8711. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[8] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[9] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[10] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[11] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[12] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[13] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[14] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
[15] | WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |