Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1383-1396.DOI: 10.16085/j.issn.1000-6613.2022-0977
• Industrial catalysis • Previous Articles Next Articles
SONG Ye(), CHEN Yuzhuo, SONG Yuncai, FENG Jie()
Received:
2022-05-26
Revised:
2022-07-21
Online:
2023-04-10
Published:
2023-03-15
Contact:
FENG Jie
通讯作者:
冯杰
作者简介:
宋叶(1997—),女,硕士研究生,研究方向为固废资源化。E-mail:songye0531@link.tyut.edu.cn。
基金资助:
CLC Number:
SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396.
宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396.
原料 | C | H | O | N | S |
---|---|---|---|---|---|
核桃壳 | 51.36 | 6.16 | 41.94 | 0.50 | 0.05 |
玉米芯 | 46.76 | 4.17 | 48.45 | 0.55 | 0.06 |
水稻秸秆 | 39.22 | 5.27 | 53.66 | 1.14 | 0.71 |
原料 | C | H | O | N | S |
---|---|---|---|---|---|
核桃壳 | 51.36 | 6.16 | 41.94 | 0.50 | 0.05 |
玉米芯 | 46.76 | 4.17 | 48.45 | 0.55 | 0.06 |
水稻秸秆 | 39.22 | 5.27 | 53.66 | 1.14 | 0.71 |
方程类别 | 方程 |
---|---|
能量守恒方程[ | |
热源Qtot | |
有效比热容(ρcp )eff | |
热导率keff | |
反应器内的动量传递守恒方程[ | |
催化剂床层内的动量传递守恒方程 | |
黏性应力张量K[ | |
气体流速u[ | |
理想气体状态方程[ | |
多孔基体的渗透率κ[ | |
质量传递控制方程[ | |
扩散通量Ji[ | |
二元扩散系数Dij[ | |
床层压降∆p[ | |
摩擦系数f | |
雷诺数Re[ |
方程类别 | 方程 |
---|---|
能量守恒方程[ | |
热源Qtot | |
有效比热容(ρcp )eff | |
热导率keff | |
反应器内的动量传递守恒方程[ | |
催化剂床层内的动量传递守恒方程 | |
黏性应力张量K[ | |
气体流速u[ | |
理想气体状态方程[ | |
多孔基体的渗透率κ[ | |
质量传递控制方程[ | |
扩散通量Ji[ | |
二元扩散系数Dij[ | |
床层压降∆p[ | |
摩擦系数f | |
雷诺数Re[ |
原料 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 |
---|---|---|
WS-CB-Cat | 196.4 | 0.145 |
CC-CB-Cat | 90.3 | 0.038 |
RS-CB-Cat | 108.1 | 0.046 |
原料 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 |
---|---|---|
WS-CB-Cat | 196.4 | 0.145 |
CC-CB-Cat | 90.3 | 0.038 |
RS-CB-Cat | 108.1 | 0.046 |
催化剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 中孔孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 |
---|---|---|---|---|
650-WS-CB-Cat | 164.0 | 0.079 | 0.024 | 0.058 |
750-WS-CB-Cat | 135.5 | 0.069 | 0.027 | 0.046 |
800-WS-CB-Cat | 131.7 | 0.080 | 0.039 | 0.044 |
催化剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 中孔孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 |
---|---|---|---|---|
650-WS-CB-Cat | 164.0 | 0.079 | 0.024 | 0.058 |
750-WS-CB-Cat | 135.5 | 0.069 | 0.027 | 0.046 |
800-WS-CB-Cat | 131.7 | 0.080 | 0.039 | 0.044 |
样品名称 | 比表面积 /m2·g-1 | 中孔比表面积 /m2·g-1 | 微孔孔容 /cm3·g-1 | 中孔孔容 /cm3·g-1 | 总孔孔容 /cm3·g-1 |
---|---|---|---|---|---|
WS-RAW | 196.4 | 111.3 | 0.074 | 0.167 | 0.221 |
WS-KOH | 1384.2 | 36.8 | 0.520 | 0.081 | 0.630 |
WS-H2O | 711.1 | 41.2 | 0.279 | 0.065 | 0.342 |
样品名称 | 比表面积 /m2·g-1 | 中孔比表面积 /m2·g-1 | 微孔孔容 /cm3·g-1 | 中孔孔容 /cm3·g-1 | 总孔孔容 /cm3·g-1 |
---|---|---|---|---|---|
WS-RAW | 196.4 | 111.3 | 0.074 | 0.167 | 0.221 |
WS-KOH | 1384.2 | 36.8 | 0.520 | 0.081 | 0.630 |
WS-H2O | 711.1 | 41.2 | 0.279 | 0.065 | 0.342 |
样品名称 | ID/IG | I(Gr+Vl+Vr)/ID | La | Lc | d002 |
---|---|---|---|---|---|
WS-RAW | 0.7513 | 0.3441 | 3.5361 | 1.5469 | 0.3892 |
WS-KOH | 0.9524 | 0.3375 | 3.9676 | 1.1225 | 0.3731 |
WS-H2O | 0.8190 | 0.3883 | 5.2651 | 1.6774 | 0.3749 |
样品名称 | ID/IG | I(Gr+Vl+Vr)/ID | La | Lc | d002 |
---|---|---|---|---|---|
WS-RAW | 0.7513 | 0.3441 | 3.5361 | 1.5469 | 0.3892 |
WS-KOH | 0.9524 | 0.3375 | 3.9676 | 1.1225 | 0.3731 |
WS-H2O | 0.8190 | 0.3883 | 5.2651 | 1.6774 | 0.3749 |
样品名称 | EDS分析(质量分数)/% | 元素分析(daf)/% | |||||
---|---|---|---|---|---|---|---|
C | O | O/C摩尔比 | C | O | O/C | ||
WS-RAW | 85.74 | 13.33 | 0.16 | 92.16 | 6.13 | 0.07 | |
WS-KOH | 88.56 | 11.10 | 0.13 | 87.70 | 10.52 | 0.12 | |
WS-H2O | 78.41 | 14.50 | 0.18 | 83.35 | 14.66 | 0.18 |
样品名称 | EDS分析(质量分数)/% | 元素分析(daf)/% | |||||
---|---|---|---|---|---|---|---|
C | O | O/C摩尔比 | C | O | O/C | ||
WS-RAW | 85.74 | 13.33 | 0.16 | 92.16 | 6.13 | 0.07 | |
WS-KOH | 88.56 | 11.10 | 0.13 | 87.70 | 10.52 | 0.12 | |
WS-H2O | 78.41 | 14.50 | 0.18 | 83.35 | 14.66 | 0.18 |
样品名称 | C | C—O | C | O—C |
---|---|---|---|---|
WS-RAW | 59.02 | 23.49 | 8.56 | 8.94 |
WS-KOH | 42.66 | 29.18 | 14.92 | 13.25 |
WS-H2O | 40.92 | 37.67 | 12.24 | 9.16 |
样品名称 | C | C—O | C | O—C |
---|---|---|---|---|
WS-RAW | 59.02 | 23.49 | 8.56 | 8.94 |
WS-KOH | 42.66 | 29.18 | 14.92 | 13.25 |
WS-H2O | 40.92 | 37.67 | 12.24 | 9.16 |
样品名称 | 晶格氧 | 氧缺陷 | 吸附氧 |
---|---|---|---|
WS-RAW | 96.22 | 2.56 | 1.22 |
WS-KOH | 44.64 | 27.22 | 28.14 |
WS-H2O | 77.98 | 4.49 | 17.54 |
样品名称 | 晶格氧 | 氧缺陷 | 吸附氧 |
---|---|---|---|
WS-RAW | 96.22 | 2.56 | 1.22 |
WS-KOH | 44.64 | 27.22 | 28.14 |
WS-H2O | 77.98 | 4.49 | 17.54 |
催化剂 | ξ | a |
---|---|---|
WS-RAW | 13.08 | |
WS-KOH | 210.85 | |
WS-H2O | 136.57 |
催化剂 | ξ | a |
---|---|---|
WS-RAW | 13.08 | |
WS-KOH | 210.85 | |
WS-H2O | 136.57 |
物性参数 | 数值 |
---|---|
比热容 | (cp )g,mix=1390J/(kg·K);(cp )cat=470J/(kg·K) |
热导率 | kg,mix=0.08W/(m·K);kcat=37.2W/(m·K) |
密度 | ρg,mix=1.05kg/m3;ρcat=400kg/m3 |
黏度 | μg,mix=1.99×10-4Pa·s |
物性参数 | 数值 |
---|---|
比热容 | (cp )g,mix=1390J/(kg·K);(cp )cat=470J/(kg·K) |
热导率 | kg,mix=0.08W/(m·K);kcat=37.2W/(m·K) |
密度 | ρg,mix=1.05kg/m3;ρcat=400kg/m3 |
黏度 | μg,mix=1.99×10-4Pa·s |
反应方程式 | ∆H/kJ·mol-1 | 反应速率表达式 |
---|---|---|
C7H8 | -50.0 | |
C+2H2 | -74.6 | |
C7H8+10.5H2O | 725.0 | |
CO+H2O CO2+H2 | -41.2 | |
CO2+C | -172.4 | |
CH4+H2O | 205.9 | |
C+H2O | 131.3 |
反应方程式 | ∆H/kJ·mol-1 | 反应速率表达式 |
---|---|---|
C7H8 | -50.0 | |
C+2H2 | -74.6 | |
C7H8+10.5H2O | 725.0 | |
CO+H2O CO2+H2 | -41.2 | |
CO2+C | -172.4 | |
CH4+H2O | 205.9 | |
C+H2O | 131.3 |
网格类型 | 单元数 | 相同条件下出口焦油浓度为0的时间/s |
---|---|---|
较细化 | 723359 | 11 |
常规 | 80855 | 11 |
较粗化 | 16238 | 11 |
网格类型 | 单元数 | 相同条件下出口焦油浓度为0的时间/s |
---|---|---|
较细化 | 723359 | 11 |
常规 | 80855 | 11 |
较粗化 | 16238 | 11 |
项目 | d1/m | h1/m | h2/m | h3/m | 高径比 | 停留时间/s |
---|---|---|---|---|---|---|
Case1 | 0.06 | 0.12 | 0.18 | 0.02 | 5.00 | 0.67 |
Case2 | 0.08 | 0.03 | 0.14 | 0.02 | 2.10 | 1 |
Case3 | 0.10 | 0.02 | 0.09 | 0.01 | 1.08 | 4 |
项目 | d1/m | h1/m | h2/m | h3/m | 高径比 | 停留时间/s |
---|---|---|---|---|---|---|
Case1 | 0.06 | 0.12 | 0.18 | 0.02 | 5.00 | 0.67 |
Case2 | 0.08 | 0.03 | 0.14 | 0.02 | 2.10 | 1 |
Case3 | 0.10 | 0.02 | 0.09 | 0.01 | 1.08 | 4 |
项目 | d1/m | h1/m | h2/m | 催化剂床层压降/Pa | 停留时间/s |
---|---|---|---|---|---|
Case4 | 0.10 | 0.02 | 0 | 2301.18 | 0.67 |
Case5 | 0.10 | 0.08 | 0 | 9204.73 | 2.67 |
Case6 | 0.10 | 0.11 | 0 | 12656.50 | 3.60 |
项目 | d1/m | h1/m | h2/m | 催化剂床层压降/Pa | 停留时间/s |
---|---|---|---|---|---|
Case4 | 0.10 | 0.02 | 0 | 2301.18 | 0.67 |
Case5 | 0.10 | 0.08 | 0 | 9204.73 | 2.67 |
Case6 | 0.10 | 0.11 | 0 | 12656.50 | 3.60 |
1 | 蔡峰, 徐海. 我国固体废物处置的现状及进展[J]. 现代盐化工, 2022, 49(1): 84-85. |
CAI Feng, XU Hai. Current status and progress of solid waste disposal in China[J]. Modern Salt and Chemical Industry, 2022, 49(1): 84-85. | |
2 | BUENTELLO-MONTOYA D, ZHANG Xiaolei, LI Jun, et al. Performance of biochar as a catalyst for tar steam reforming: effect of the porous structure[J]. Applied Energy, 2020, 259: 114176-114188. |
3 | HERVY M, WEISS-HORTALA E, PHAM MINH D, et al. Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar[J]. Applied Energy, 2019, 237: 487-499. |
4 | SHEN Yafei, ZHAO Peitao, SHAO Qinfu, et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied Catalysis B: Environmental, 2014, 152/153: 140-151. |
5 | PAN Dengfeng, QU Xuan, BI Jicheng. Effect of gasified semi-coke on coal pyrolysis in the poly-generation of CFB gasification combined with coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 461-467. |
6 | ZENG Xi, WANG Yin, YU Jian, et al. Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer[J]. Energy & Fuels, 2011, 25(11): 5242-5249. |
7 | 付大庆. 生物质半焦催化提质煤低温热解焦油研究[D]. 太原: 太原理工大学, 2018. |
FU Daqing. Study on catalytic upgrading of coal low temperature pyrolysis tar over bio-char[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
8 | 王兴栋. 半焦基催化剂裂解煤热解产物调控油气品质[D]. 乌鲁木齐: 新疆大学, 2012. |
WANG Xingdong. Catalytic cracking of coal pyrolysis product for oil and gas upgrading over char-based catalysts[D]. Urumqi: Xinjiang University, 2012. | |
9 | SHEN Yafei. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 281-295. |
10 | DONG L, ASADULLAH M, ZHANG S, et al. An advanced biomass gasification technology with integrated catalytic hot gas cleaning (I): Technology and initial experimental results in a lab-scale facility[J]. Fuel, 2013, 108: 409-416. |
11 | ARRHENIUS S. Über Die reaktionsgeschwindigkeit Bei der inversion von rohrzucker durch säuren[J]. Zeitschrift Für Physikalische Chemie, 1889, 4U(1): 226-248. |
12 | OSTROVSKII N M. Catalyst deactivation kinetics: an apparent delay in decreasing of catalyst activity, “inflection point” and data interpretation[J]. Russian Journal of Physical Chemistry A, 2011, 85(13): 2336-2343. |
13 | ZHANG Shuping, SU Yinhai, XIONG Yuanquan, et al. Physicochemical structure and reactivity of char from torrefied rice husk: effects of inorganic species and torrefaction temperature[J]. Fuel, 2020, 262: 116667. |
14 | DI BLASI C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation[J]. Chemical Engineering Science, 1996, 51(7): 1121-1132. |
15 | 刘永忠, 王乐. 多孔介质中超临界流体可调特性的模拟与分析——温度梯度的作用[J]. 高校化学工程学报, 2008, 22(6): 915-920. |
LIU Yongzhong, WANG Le. Simulation and analysis of tunable performances of supercritical fluid flow in porous medium — effect of temperature gradients[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 915-920. | |
16 | 席肖玉. 某些与黏性流体力学方程耦合的方程解的相关性质的研究[D]. 北京: 中国工程物理研究院, 2017. |
XI Xiaoyu. The study of the related properties of some of the solutions of equations coupled to viscous hydrodynamic equations[D]. Beijing: China Academy of Engineering Physics, 2017. | |
17 | ATANGANA A. Fractional variable order derivatives[M]// Fractional operators with constant and variable order with application to geo-hydrology. Pittsburgh: Academic Press, 2018: 221-243. |
18 | GRØNLI M G, MELAAEN M C. Mathematical model for wood pyrolysiscomparison of experimental measurements with model predictions[J]. Energy & Fuels, 2000, 14(4): 791-800. |
19 | SALLÈS J, THOVERT J F, ADLER P M. Deposition in porous media and clogging[J]. Chemical Engineering Science, 1993, 48(16): 2839-2858. |
20 | 曾子粤, 杨建森, 魏永起. 脱硫石膏灌芯墙脱水过程的仿真模拟与分析[J]. 材料导报, 2022, 36(5): 89-94. |
ZENG Ziyue, YANG Jiansen, WEI Yongqi. The simulation and analysis of dehydration process of FGD gypsum grouted wall[J]. Materials Reports, 2022, 36(5): 89-94. | |
21 | VAN DE VEN-LUCASSEN I M J J, OTTEN A M V J, VLUGT T J H, et al. Molecular dynamics simulation of the maxwell-stefan diffusion coefficients in Lennard-Jones liquid mixtures[J]. Molecular Simulation, 1999, 23(1): 43-54. |
22 | FULLER E N, SCHETTLER P D, GIDDINGS J C. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry, 1966, 58(5): 18-27. |
23 | ERGUN S. Fluid flow through packed column[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94. |
24 | 陈耀壮, 姚松柏, 马磊, 等. 工业反应器中催化剂床层压力降的模拟计算[J]. 天然气化工(C1化学与化工), 2008, 33(5): 72-75. |
CHEN Yaozhuang, YAO Songbai, MA Lei, et al. Simulation of the pressure drop of the catalyst bed in industrial reactor[J]. Natural Gas Chemical Industry, 2008, 33(5): 72-75. | |
25 | WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
26 | YUAN M J, KIM Y, JIA C Q. Feasibility of recycling KOH in chemical activation of oil-sands petroleum coke[J]. The Canadian Journal of Chemical Engineering, 2012, 90(6): 1472-1478. |
27 | ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2012, 23(1): 015401. |
28 | FEBRIANA S, RIYANTO E S, DIMYATI A, et al. Characterization studies of cyclotron CS-30 carbon puller material using powder X-ray diffraction and SEM, EDX cross section method[J]. IOP Conference Series: Materials Science and Engineering, 2018, 299: 012054. |
29 | SIDDIQUI M N, ALI M F, SHIROKOFF J. Use of X-ray diffraction in assessing the aging pattern of asphalt fractions[J]. Fuel, 2002, 81(1): 51-58. |
30 | 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318. |
WU Juanxia, XU Hua, ZHANG Jin. Raman spectroscopy of graphene[J]. Acta Chimica Sinica, 2014, 72(3): 301-318. | |
31 | SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353. |
32 | LU L, SAHAJWALLA V, KONG C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001, 39(12): 1821-1833. |
33 | BALACHANDRAN M, AG K. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. International Journal of Electrochemical Science, 2012, 7(4): 3127-3134. |
34 | LI Bin, LIU Dongjing, LIN Dan, et al. Changes in biochar functional groups and its reactivity after volatile-char interactions during biomass pyrolysis[J]. Energy & Fuels, 2020, 34(11): 14291-14299. |
35 | SONG Yao, WANG Yi, HU Xun, et al. Effects of volatile-char interactions on in situ destruction of nascent tar during the pyrolysis and gasification of biomass (I): Roles of nascent char[J]. Fuel, 2014, 122: 60-66. |
36 | CHEN Xiangnan, WANG Xiaohui, FANG De. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1048-1058. |
37 | Gang OU, XU Yushuai, WEN Bo, et al. Tuning defects in oxides at room temperature by lithium reduction[J]. Nature Communications, 2018, 9: 1302-1311. |
38 | FOURCAULT A, MARIAS F, MICHON U. Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch[J]. Biomass and Bioenergy, 2010, 34(9): 1363-1374. |
39 | DU Yupeng, LIU Haitao, REN Wanzhong. Numerical investigations of a fluidized bed biomass gasifier coupling detailed tar generation and conversion kinetics with particle-scale hydrodynamics[J]. Energy & Fuels, 2020, 34(7): 8440-8451. |
40 | 李政, 王天骄, 韩志明, 等. Texaco煤气化炉数学模型的研究——建模部分[J]. 动力工程, 2001, 21(2): 1161-1165. |
LI Zheng, WANG Tianjiao, HAN Zhiming, et al. Study on mathematical model of texaco gasifier-modeling[J]. Power Engineering, 2001, 21(2): 1161-1165. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[3] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[9] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[10] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[11] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[12] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[13] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[14] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[15] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 184
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |