Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1373-1382.DOI: 10.16085/j.issn.1000-6613.2022-0815
• Industrial catalysis • Previous Articles Next Articles
ZHOU Hao1(), ZHANG Heng2, WEN Nini2, WANG Xurui1, XU Lu1, LI Wei1, SU Yaxin2
Received:
2022-05-05
Revised:
2022-07-06
Online:
2023-04-10
Published:
2023-03-15
Contact:
ZHOU Hao
周皞1(), 张恒2, 温妮妮2, 王旭瑞1, 徐璐1, 李玮1, 苏亚欣2
通讯作者:
周皞
作者简介:
周皞(1976—),男,博士,教授,研究方向为燃烧污染物生成与控制。E-mail:hzhou@czie.edu.cn。
基金资助:
CLC Number:
ZHOU Hao, ZHANG Heng, WEN Nini, WANG Xurui, XU Lu, LI Wei, SU Yaxin. Preparation and de-NO x performance of C3H6-SCR over Cu-SAPO-44 catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1373-1382.
周皞, 张恒, 温妮妮, 王旭瑞, 徐璐, 李玮, 苏亚欣. Cu-SAPO-44分子筛的制备及其C3H6-SCR脱硝性能[J]. 化工进展, 2023, 42(3): 1373-1382.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0815
催化剂样品 | 元素质量分数/% | |||
---|---|---|---|---|
Cu | Al | P | Si | |
Cu-SAPO-44(S) | 3.992 | 14.655 | 14.692 | 5.595 |
Cu-SAPO-44(P) | 3.986 | 14.630 | 14.720 | 5.837 |
Cu-SAPO-44(T) | 5.016 | 15.021 | 13.463 | 6.654 |
催化剂样品 | 元素质量分数/% | |||
---|---|---|---|---|
Cu | Al | P | Si | |
Cu-SAPO-44(S) | 3.992 | 14.655 | 14.692 | 5.595 |
Cu-SAPO-44(P) | 3.986 | 14.630 | 14.720 | 5.837 |
Cu-SAPO-44(T) | 5.016 | 15.021 | 13.463 | 6.654 |
催化剂样品 | 比表面积/m2·g-1 | 孔容量/cm3·g-1 | 孔径/nm |
---|---|---|---|
Cu-SAPO-44(S) | 602 | 0.226 | 1.788 |
Cu-SAPO-44(T) | 488 | 0.182 | 1.498 |
Cu-SAPO-44(P) | 577 | 0.216 | 1.498 |
催化剂样品 | 比表面积/m2·g-1 | 孔容量/cm3·g-1 | 孔径/nm |
---|---|---|---|
Cu-SAPO-44(S) | 602 | 0.226 | 1.788 |
Cu-SAPO-44(T) | 488 | 0.182 | 1.498 |
Cu-SAPO-44(P) | 577 | 0.216 | 1.498 |
催化剂样品 | 孤立Cu2+ | CuO | |||
---|---|---|---|---|---|
峰面积 | 比例/% | 峰面积 | 比例/% | ||
Cu-SAPO-44(S) | 94.60 | 28.8 | 234.43 | 71.2 | |
Cu-SAPO-44(T) | 59.04 | 33.3 | 118.02 | 66.7 | |
Cu-SAPO-44(P) | 77.48 | 30.7 | 174.80 | 69.3 |
催化剂样品 | 孤立Cu2+ | CuO | |||
---|---|---|---|---|---|
峰面积 | 比例/% | 峰面积 | 比例/% | ||
Cu-SAPO-44(S) | 94.60 | 28.8 | 234.43 | 71.2 | |
Cu-SAPO-44(T) | 59.04 | 33.3 | 118.02 | 66.7 | |
Cu-SAPO-44(P) | 77.48 | 30.7 | 174.80 | 69.3 |
1 | 中华人民共和国环境保护部. 中国机动车污染防治年报[R]. 2021. |
Ministry of Environmental Protection of the People’s Republic of China. China mobile source environmental management annual report[R]. 2021. | |
2 | ZHANG Ling, WU Qinming, MENG Xiangju, et al. Recent advances in the preparation of zeolites for the selective catalytic reduction of NO x in diesel engines[J]. Reaction Chemistry & Engineering, 2019, 4(6): 975-985. |
3 | 周远松, 高凤雨, 唐晓龙, 等. 金属氧化物催化CO还原NO的研究进展[J]. 化工进展, 2019, 38(11): 4941-4948. |
ZHOU Yuansong, GAO Fengyu, TANG Xiaolong, et al. Research progress on NO reduction by CO over metal oxide catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4941-4948. | |
4 | WEN Nini, LIN Rui, SU Yaxin, et al. SCR of NO with CH4 over Fe/Ga2O3-Al2O3 and the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105014. |
5 | XU Junqiang, WANG Honglin, GUO Fang, et al. Recent advances in supported molecular sieve catalysts with wide temperature range for selective catalytic reduction of NO x with C3H6 [J]. RSC Advances, 2019, 9(2): 824-838. |
6 | 周皞, 葛梦瑶, 伍士国, 等. 载体对铁基整体式催化剂上丙烯催化还原NO的影响[J]. 化工进展, 2018, 37(12): 4693-4700. |
ZHOU Hao, GE Mengyao, WU Shiguo, et al. Effects of supports on the iron based monolithic catalysts for NO reduction with propene[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4693-4700. | |
7 | ISHIHARA T, KAGAWA M, HADAMA F, et al. Copper ion-exchanged SAPO-34 as a thermostable catalyst for selective reduction of NO with C3H6 [J]. Journal of Catalysis, 1997, 169(1): 93-102. |
8 | YANG Jun, CHANG Yupeng, DAI Weili, et al. Ru-In/H-SSZ-13 for the selective reduction of nitric oxide by methane: Insights from temperature-programmed desorption studies[J]. Applied Catalysis B: Environmental, 2018, 236: 404-412. |
9 | YANG Jun, CHANG Yupeng, DAI Weili, et al. Bimetallic Cr-In/H-SSZ-13 for selective catalytic reduction of nitric oxide by methane[J]. Chinese Journal of Catalysis, 2018, 39(5): 1004-1011. |
10 | GAO Zhongnan, ZHAO Dongyue, YANG Yuexi, et al. Influence of copper locations on catalytic properties and activities of Cu/SAPO-34 in C3H6-SCR[J]. Industrial & Engineering Chemistry Research, 2021, 60(19): 6940-6949. |
11 | XIN Ying, WANG Xiao, LI Qian, et al. The potential of Cu-SAPO-44 in the selective catalytic reduction of NO x with NH3 [J]. ChemCatChem, 2016, 8(24): 3740-3745. |
12 | XIE Lijuan, LIU Fudong, SHI Xiaoyan, et al. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2015, 179: 206-212. |
13 | REN Limin, ZHU Longfeng, YANG Chengguang, et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO x by NH3 [J]. Chemical Communications, 2011, 47(35): 9789-9791. |
14 | MARTÍNEZ-FRANCO R, MOLINER M, FRANCH C, et al. Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NO x [J]. Applied Catalysis B: Environmental, 2012, 127: 273-280. |
15 | XIN Ying, ZHANG Nana, WANG Xiao, et al. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO x by NH3 [J]. Catalysis Today, 2019, 332: 35-41. |
16 | YANG Di, ZHOU Hao, WANG Congying, et al. NO selective catalytic reduction with propylene over one-pot synthesized Fe-SAPO-34 catalyst under diesel exhaust conditions[J]. Fuel, 2021, 290: 119822. |
17 | WANG J H, ZHAO H W, HALLER G, et al. Recent advances in the selective catalytic reduction of NO x with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
18 | 张恒, 周皞, 温妮妮, 等. Cu-SAPO-44选择性催化丙烯还原NO性能研究[J]. 燃料化学学报, 2022, 50(8): 1064-1074. |
ZHANG Heng, ZHOU Hao, WEN Nini, et al. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1064-1074. | |
19 | ZHOU Xiaoming, CHEN Zhuoyuan, GUO Zhiyong, et al. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction[J]. Journal of Hazardous Materials, 2021, 405: 124177. |
20 | MUTTAKIN M, MITRA S, THU K, et al. Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms[J]. International Journal of Heat and Mass Transfer, 2018, 122: 795-805. |
21 | ZHANG Qiongdan, WANG Qiongsheng, WANG Shiming. Efficient heterogeneous Fenton-like catalysis of Fe-doped SAPO-44 zeolite synthesized from bauxite and rice husk[J]. Chemical Physics Letters, 2020, 753: 137598. |
22 | ZHOU Hao, YANG Di, WANG Congying, et al. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-34 catalysts[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1997-2004. |
23 | 王聪颖, 周皞, 杨迪, 等. 一步水热合成Cu-SSZ-13分子筛选择性催化C3H6还原NO[J]. 无机化学学报, 2021, 37(5): 853-866. |
WANG Congying, ZHOU Hao, YANG Di, et al. Selective catalytic reduction of NO with C3H6 over one-step hydrothermal synthesized Cu-SSZ-13 catalysts[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(5): 853-866. | |
24 | NIU Can, SHI Xiaoyan, LIU Fudong, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NO x [J]. Chemical Engineering Journal, 2016, 294: 254-263. |
25 | CAO Yi, FENG Xi, XU Haidi, et al. Novel promotional effect of yttrium on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NO x by NH3 (NH3-SCR)[J]. Catalysis Communications, 2016, 76: 33-36. |
26 | CAO Yi, ZOU Sha, LAN Li, et al. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NO x with ammonia[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 304-311. |
27 | XUE Junjie, WANG Xinquan, QI Gongshin, et al. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NO x with ammonia: Relationships between active Cu sites and de-NO x performance at low temperature[J]. Journal of Catalysis, 2013, 297: 56-64. |
28 | DONG Xuesong, WANG Jihui, ZHAO Huawang, et al. The promotion effect of CeO x on Cu-SAPO-34 catalyst for selective catalytic reduction of NO x with ammonia[J]. Catalysis Today, 2015, 258: 28-34. |
29 | NIU Can, SHI Xiaoyan, LIU Kuo, et al. A novel one-pot synthesized CuCe-SAPO-34 catalyst with high NH3-SCR activity and H2O resistance[J]. Catalysis Communications, 2016, 81: 20-23. |
30 | ZHOU Hao, GE Mengyao, ZHAO Huishuang, et al. Selective catalytic reduction of nitric oxide with propylene over Fe/beta catalysts under lean-burn conditions[J]. Catalysts, 2019, 9(2): 205. |
31 | WANG Lei, LI Wei, QI Gongshin, et al. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3 [J]. Journal of Catalysis, 2012, 289: 21-29. |
32 | SUN Lijing, YANG Miao, CAO Yi, et al. A reconstruction strategy for the synthesis of Cu-SAPO-34 with excellent NH3-SCR catalytic performance and hydrothermal stability[J]. Chinese Journal of Catalysis, 2020, 41(9): 1410-1420. |
33 | 毛静雯, 徐斌, 胡宜康, 等. Ce金属改性对Cu-SAPO-34催化剂水热稳定性能的影响[J]. 燃料化学学报, 2020, 48(10): 1208-1215. |
MAO Jingwen, XU Bin, HU Yikang, et al. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1208-1215. | |
34 | LI Junhua, ZHU Yongqing, KE Rui, et al. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions[J]. Applied Catalysis B: Environmental, 2008, 80(3/4): 202-213. |
[1] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[2] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[3] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[5] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[6] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[7] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[8] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[9] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[10] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[11] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[12] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[13] | LAI Huaidong, CHENG Deshu, WANG Jian, LUO Juxiang. Preparation and application of α-methyl styrene maleic anhydride copolymer microspheres immobilized β-cyclodextrin [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2038-2046. |
[14] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[15] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |