Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1397-1410.DOI: 10.16085/j.issn.1000-6613.2022-0800
• Materials science and technology • Previous Articles Next Articles
ZHANG Yixuan(), HU Wei, LIU Mengyao, JU Jingge(), ZHAO Yixia(), KANG Weimin()
Received:
2022-05-05
Revised:
2022-06-23
Online:
2023-04-10
Published:
2023-03-15
Contact:
JU Jingge, ZHAO Yixia, KANG Weimin
张艺璇(), 胡伟, 刘梦瑶, 鞠敬鸽(), 赵义侠(), 康卫民()
通讯作者:
鞠敬鸽,赵义侠,康卫民
作者简介:
张艺璇(1998—),女,硕士研究生,研究方向为锌离子电池。E-mail:zhangyx187@126.com。
基金资助:
CLC Number:
ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410.
张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0800
1 | THOMAS J M, EDWARDS P P, DOBSON P J, et al. Decarbonising energy: the developing international activity in hydrogen technologies and fuel cells[J]. Journal of Energy Chemistry, 2020, 51: 405-415. |
2 | QIN Yudi, DU Jiuyu, LU Languang, et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current: heating effect and impact on battery life[J]. Applied Energy, 2020, 280: 115957. |
3 | LIANG Yeru, ZHAO Chenzi, YUAN Hong, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat, 2019, 1(1): 6-32. |
4 | LI Matthew, LU Jun, CHEN Zhongwei, et al. 30 Years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): e1800561. |
5 | WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443. |
6 | TANG Boya, SHAN Lutong, LIANG Shuquan, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304. |
7 | XING Zhenyu, WANG Shun, YU Aiping, et al. Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium[J]. Nano Energy, 2018, 50: 229-244. |
8 | HUANG Jianhang, GUO Zhaowei, MA Yuanyuan, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): 1800272. |
9 | LIU Zhuoxin, HUANG Yan, HUANG Yang, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1): 180-232. |
10 | VERMA V, KUMAR S, MANALASTAS W JR, et al. Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: challenges and outlook[J]. Advanced Sustainable Systems, 2019, 3(1): 1800111. |
11 | Duan BIN, WEN Yunping, WANG Yonggang, et al. The development in aqueous lithium-ion batteries[J]. Journal of Energy Chemistry, 2018, 27(6): 1521-1535. |
12 | HERTZBERG B J, HUANG An, HSIEH A, et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn-MnO2 alkaline battery[J]. Chemistry of Materials, 2016, 28(13): 4536-4545. |
13 | WANG Fei, FAN Xiulin, GAO Tao, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science, 2017, 3(10): 1121-1128. |
14 | FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29(7): 1604685. |
15 | MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development: the key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3): 903-918. |
16 | FANG Guozhao, ZHOU Jiang, PAN Anqiang, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501. |
17 | GENG M, NORTHWOOD D O. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. International Journal of Hydrogen Energy, 2003, 28(6): 633-636. |
18 | MCLARNON F R, CAIRNS E J. The secondary alkaline zinc electrode[J]. Journal of the Electrochemical Society, 1991, 138(2): 645-656. |
19 | ZENG Xiaohui, HAO Junnan, WANG Zhijie, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J]. Energy Storage Materials, 2019, 20: 410-437. |
20 | TSAI W L, HSU P C, HWU Y, et al. Building on bubbles in metal electrodeposition[J]. Nature, 2002, 417(6885): 139. |
21 | CAI Zhao, Yangtao OU, WANG Jindi, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J]. Energy Storage Materials, 2020, 27: 205-211. |
22 | ZHANG Leyuan, CHEN Liang, ZHOU Xufeng, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5V: the zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): 1400930. |
23 | XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935. |
24 | SONG Ming, TAN Hua, CHAO Dongliang, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564. |
25 | CAI Yangsheng, LIU Fei, LUO Zhigao, et al. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode[J]. Energy Storage Materials, 2018, 13: 168-174. |
26 | DING Junwei, DU Zhiguo, GU Linqing, et al. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide[J]. Advanced Materials, 2018, 30(26): 1800762. |
27 | KUNDU D P, HOSSEINI VAJARGAH S, WAN Liwen, et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface[J]. Energy & Environmental Science, 2018, 11(4): 881-892. |
28 | HEREMANS P, TRIPATHI A K, DE JAMBLINNE DE MEUX A, et al. Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications[J]. Advanced Materials, 2016, 28(22): 4266-4282. |
29 | SHI Bojing, LI Zhou, FAN Yubo. Implantable energy-harvesting devices[J]. Advanced Materials, 2018, 30(44): e1801511. |
30 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
31 | XUE Zhigang, HE Dan, XIE Xiaolin. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
32 | CHEN Renjie, QU Wenjie, GUO Xing, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6): 487-516. |
33 | LONG Lizhen, WANG Shuanjin, XIAO Min, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
34 | WANG Zifeng, RUAN Zhaoheng, LIU Zhuoxin, et al. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function[J]. Journal of Materials Chemistry A, 2018, 6(18): 8549-8557. |
35 | WANG Zifeng, RUAN Zhaoheng, Wing Sum NG, et al. Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric[J]. Small Methods, 2018, 2(10): 1800150. |
36 | BASKORO Febri, WONG Huiqi, YEN Hungju. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery[J]. ACS Applied Energy Materials, 2019, 2(6): 3937-3971. |
37 | KOTOBUKI M, SUZUKI Y, MUNAKATA H, et al. Electrochemical property of honeycomb type all-solid-state Li battery at high temperature[J]. Electrochemistry, 2011, 79(6): 464-466. |
38 | YI Jin, GUO Shaohua, HE Ping, et al. Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries[J]. Energy & Environmental Science, 2017, 10(4): 860-884. |
39 | YAN Huihui, ZHANG Xikun, YANG Zhengwei, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews, 2022, 452: 214297. |
40 | YANG M X, DRISCOLL D M, BALASUBRAMANIAN M, et al. Solvation structure and electrochemical properties of a new weakly coordinating aluminate salt as a nonaqueous electrolyte for zinc batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160529. |
41 | YE H, XU J J. Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends[J]. Journal of Power Sources, 2007, 165(2): 500-508. |
42 | KARAN S, SAHU T B, SAHU M J, et al. Investigations on ion transport behaviour in a non-lithium chemical based solid polymer electrolyte (SPE): [PEO: ZnA][J]. Materials Today: Proceedings, 2016, 3(2): 109-114. |
43 | KARAN S, SAHU T B, SAHU M J, et al. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2][J]. Ionics, 2017, 23(10): 2721-2726. |
44 | CHEN Long, LI Yutao, LI Shuaipeng, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184. |
45 | JOHNSI M, AUSTIN SUTHANTHIRARAJ S. Preparation, zinc ion transport properties, and battery application based on poly(vinilydene fluoride-co-hexa fluoro propylene) polymer electrolyte system containing titanium dioxide nanofiller[J]. High Performance Polymers, 2015, 27(7): 877-885. |
46 | LIU Wei, LIU Nian, SUN Jie, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
47 | CHEN Ze, LI Xinliang, WANG Donghong, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science, 2021, 14(6): 3492-3501. |
48 | HUANG Jiaqi, CHI Xiaowei, YANG Jianhua, et al. An ultrastable Na-Zn solid-state hybrid battery enabled by a robust dual-cross-linked polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17583-17591. |
49 | LIU Dong, TANG Zhehao, LUO Longfei, et al. Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36320-36329. |
50 | GAO Lu, LI Jianxin, JU Jingge, et al. High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery[J]. Journal of Energy Chemistry, 2021, 54: 644-654. |
51 | LI Dan, CHEN Long, WANG Tianshi, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
52 | CHEN Long, FAN Lizhen. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15: 37-45. |
53 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
54 | JANKOWSKI P, WIECZOREK W, JOHANSSON P. Functional ionic liquids: cationic SEI-formers for lithium batteries[J]. Energy Storage Materials, 2019, 20: 108-117. |
55 | Yanqun LYU, XIAO Ying, MA Longtao, et al. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries[J]. Advanced Materials, 2022, 34(4): 2106409. |
56 | PRASANNA C M SAI, AUSTIN SUTHANTHIRARAJ S. PVC/PEMA-based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano-ZrO2 for zinc ion batteries[J]. Polymer Composites, 2019, 40(9): 3402-3411. |
57 | MA Longtao, CHEN Shengmei, LI Na, et al. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries[J]. Advanced Materials, 2020, 32(14): e1908121. |
58 | POLU A R, RHEE H W. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7212-7219. |
59 | RATHIKA R, SUTHANTHIRARAJ S A. Influence of 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide plasticization on zinc-ion conducting PEO/PVDF blend gel polymer electrolyte[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 19632-19643. |
60 | ZHOU Wenjun, ZHANG Meng, KONG Xiangyue, et al. Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries[J]. Advanced Science, 2021, 8(13): 2004490. |
61 | DUERAMAE I, OKHAWILAI M, KASEMSIRI P, et al. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery[J]. Scientific Reports, 2020, 10: 12587. |
62 | QIU Wenda, LI Yu, YOU Ao, et al. High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth[J]. Journal of Materials Chemistry A, 2017, 5(28): 14838-14846. |
63 | LI Hongfei, LIU Zhuoxin, LIANG Guojin, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148. |
64 | GAIKWAD A M, ZAMARAYEVA A M, ROUSSEAU J, et al. Highly stretchable alkaline batteries based on an embedded conductive fabric[J]. Advanced Materials, 2012, 24(37): 5071-5076. |
65 | TAFUR J P, ABAD J, ROMÁN E, et al. Charge storage mechanism of MnO2 cathodes in Zn/MnO2 batteries using ionic liquid-based gel polymer electrolytes[J]. Electrochemistry Communications, 2015, 60: 190-194. |
66 | HUANG Yan, LI Zhen, PEI Zengxia, et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte[J]. Advanced Energy Materials, 2018, 8(31): 1802288. |
67 | ZHANG Silan, YU Nengsheng, ZENG Sha, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(26): 12237-12243. |
68 | ZHU Minshen, WANG Zhenguang, LI Hongfei, et al. Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen[J]. Energy & Environmental Science, 2018, 11(9): 2414-2422. |
69 | ZHANG Qichong, LI Chaowei, LI Qiulong, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19(6): 4035-4042. |
70 | LI Hongfei, HAN Cuiping, HUANG Yan, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4): 941-951. |
71 | CHAN Cheuk Ying, WANG Ziqi, LI Yangling, et al. Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30594-30602. |
72 | TAFUR J P, FERNÁNDEZ ROMERO A J. Electrical and spectroscopic characterization of PVdF-HFP and TFSI—Ionic liquids-based gel polymer electrolyte membranes. Influence of ZnTf2 salt[J]. Journal of Membrane Science, 2014, 469: 499-506. |
73 | ZHANG Guangzhao, YANG Yu, CHEN Yunhua, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(29): e1801189. |
74 | YANG Yun, YU Dandan, WANG Hua, et al. Smart electrochemical energy storage devices with self-protection and self-adaptation abilities[J]. Advanced Materials, 2017, 29(45): 1703040. |
75 | CHOUDHURY N A, SAMPATH S, SHUKLA A K. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview[J]. Energy & Environmental Science, 2009, 2(1): 55-67. |
76 | HUANG Shuo, WAN Fang, BI Songshan, et al. A self-healing integrated all-in-one zinc-ion battery[J]. Angewandte Chemie International Edition, 2019, 58(13): 4313-4317. |
77 | LI Guo, ZHANG Hongji, FORTIN D, et al. Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities[J]. Langmuir, 2015, 31(42): 11709-11716. |
78 | WANG Na, ZHOU Rongkun, ZHENG Zilong, et al. Flexible solid-state Zn-polymer batteries with practical functions[J]. Chemical Engineering Journal, 2021, 425: 131454. |
79 | PEYGHAMBARZADEH S M, HASHEMABADI S H, HOSEINI S M, et al. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators[J]. International Communications in Heat and Mass Transfer, 2011, 38(9): 1283-1290. |
80 | KUMAR R M, BASKAR P, BALAMURUGAN K, et al. On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration[J]. The Journal of Physical Chemistry A, 2012, 116(17): 4239-4247. |
81 | MO Funian, LIANG Guojin, MENG Qiangqiang, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20℃[J]. Energy & Environmental Science, 2019, 12(2): 706-715. |
82 | WANG Jiawei, HUANG Yuan, LIU Binbin, et al. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte[J]. Energy Storage Materials, 2021, 41: 599-605. |
83 | 王奔, 陈繁, Stephan HANDSCHUH-WANG, 等. 抗失水抗结冰水凝胶的研究进展[J]. 高分子学报, 2020, 51(9): 969-982. |
WANG Ben, CHEN Fan, Stephan HANDSCHUH-WANG, et al. Progresses in anti-dehydration and anti-freezing hydrogels[J]. Acta Polymerica Sinica, 2020, 51(9): 969-982. | |
84 | WIENER C G, TYAGI M, LIU Y, et al. Supramolecular hydrophobic aggregates in hydrogels partially inhibit ice formation[J]. The Journal of Physical Chemistry B, 2016, 120(24): 5543-5552. |
85 | ZHAO Yang, ZHANG Ye, SUN Hao, et al. A self-healing aqueous lithium-ion battery[J]. Angewandte Chemie International Edition, 2016, 55(46): 14384-14388. |
86 | ZHAO J W, SONIGARA K K, LI J J, et al. A smart flexible zinc battery with cooling recovery ability[J]. Angewandte Chemie International Edition, 2017, 56(27): 7871-7875. |
87 | SONI S S, FADADU K B, GIBAUD A. Ionic conductivity through thermoresponsive polymer gel: ordering matters[J]. Langmuir, 2012, 28(1): 751-756. |
88 | WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: 5193. |
89 | MO Funian, LI Hongfei, PEI Zengxia, et al. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes[J]. Science Bulletin, 2018, 63(16): 1077-1086. |
90 | ZHANG Hao, XUE Pan, LIU Jialiang, et al. Thermal-switching and repeatable self-protective hydrogel polyelectrolytes for energy storage applications of flexible electronics[J]. ACS Applied Energy Materials, 2021, 4(6): 6116-6124. |
91 | SUN H Y, TAKEDA Y, IMANISHI N, et al. Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes[J]. Journal of the Electrochemical Society, 2000, 147(7): 2462-2467. |
92 | CHENG Xunliang, PAN Jian, ZHAO Yang, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(7): 1702184. |
93 | LIN Dingchang, LIU Yayuan, CUI Yi. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
94 | ZHAO Fei, SHI Ye, PAN Lijia, et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications[J]. Accounts of Chemical Research, 2017, 50(7): 1734-1743. |
95 | LIANG Jianneng, LUO Jing, SUN Qian, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
96 | Hyungyeon CHA, KIM Junhyeok, LEE Yoonji, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small, 2018, 14(43): e1702989. |
97 | MA Longtao, CHEN Shengmei, LI Xinliang, et al. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(52): 23836-23844. |
[1] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[2] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[3] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[4] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[5] | ZHANG Zhicheng, HAN Daliang, FAN Dinghui, TAO Ying, WENG Zhe, YANG Quanhong. Recent advances in crystal plane regulation of zinc metal anodes for intrinsically safe aqueous zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2504-2515. |
[6] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[7] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
[8] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[9] | XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271. |
[10] | LIU Yang, ZHAO Heng, LI Qian, XIN Hu, LI Xingtao. Research progress of perfluoropolyether polymers and functional composites [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 321-335. |
[11] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[12] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[13] | GUAN Haoran, ZHU Lina, ZHU Lingyue, YUAN Dandan, ZHANG Yuqing, WANG Baohui. Progress and challenges of electrochemical synthesis of ammonia from different hydrogen and nitrogen sources [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4098-4110. |
[14] | MA Hongpeng, ZHANG Xin, QIN Wenbo, GUO Bin, LI Panxin. Research progress of different modification methods of polyvinyl alcohol fiber before and after fiber formation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3063-3076. |
[15] | REN Shoulong, LU Tingzhong, TANG Bo, GAO Ying, DAI Yuanzhe, JI li, ZHAO Shengwu. Research progress on radiative cooling materials [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |