Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1411-1425.DOI: 10.16085/j.issn.1000-6613.2022-0918
• Materials science and technology • Previous Articles Next Articles
GAO Jiangyu1(), ZHANG Yaojun1(), HE Panyang2, LIU Licai1, ZHANG Fengye1
Received:
2022-05-17
Revised:
2022-06-27
Online:
2023-04-10
Published:
2023-03-15
Contact:
ZHANG Yaojun
高江雨1(), 张耀君1(), 贺攀阳2, 刘礼才1, 张枫烨1
通讯作者:
张耀君
作者简介:
高江雨(1998—),男,硕士研究生,研究方向为固体废弃物资源化。E-mail:gaojiangyu@xauat.edu.cn。
基金资助:
CLC Number:
GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425.
高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0918
养护温度制度 | 养护环境 | 磷酸质量分数 /% | 水用量 | 磷酸用量 | 原料性质 | 抗压强度 /MPa | 参考文献 |
---|---|---|---|---|---|---|---|
50℃(7d) | 潮湿/干燥 | 85 | W/B=0.3 | P/Al=0.6~1.0 | — | 40~117.7 | [ |
60℃(24h)、RT(21d) | — | 85 | W/B=0.25 | Si/P=2.25~3.50 | d≤125μm | 最大37 | [ |
60℃(24h)、RT(28d) | — | 85 | — | Si/P=2.75 | d≤125μm、100μm、80μm、63μm | 39~54 | [ |
RT(24h)、60℃(24h)、RT(28d) | 密封 | 4~14mol/L | L/S=0.8 | — | — | 36.4~93.8 | [ |
RT(5d)、60℃(24h)、RT(28d) | 密封 | 10mol/L | L/S=0.95 | — | 不同三水铝石含量,d≤90μm | 最大54.41 | [ |
RT(3~28d) | 潮湿 | 85 | H2O/偏高岭土(MK)=0.4 | Si/P=2.75 | — | 最大51.3 | [ |
20℃、40℃和70℃ | 密封 | 85 | Al/H2O=0.15~0.62 | Al/P=1或4 | Si/Al=0.85~1.02,d50=10~6μm | 44~120 | [ |
60℃或RT(15d) | 密封 | 85 | L/S=1 | P/Al=1 | — | 29.9或20.7 | [ |
60℃(24h)、RT(28d) | 密封 | 85 | P/Al=0.5~2 | — | 最大2.1 | [ | |
80℃(24h)、60℃(3d) | 密封 | — | H2O/Al2O3=4∶1 | H3PO4/Al2O3=1 | SiO2/Al2O3=1,d≤45μm | 最大89.3 | [ |
80℃(24h)、60℃(3d) | 密封 | — | H2O/Al2O3=2∶1 | H3PO4/Al2O3=1 | SiO2/Al2O3=3/1,200~1000℃(2h) | 最大60 | [ |
40℃(24h)、60℃(24h) | 密封 | 85 | L/S=1 | P/Al=0.52~0.84 | Si/Al=0.96 | 23.1~123.4 | [ |
40℃(24h)、80℃(24h) | 密封 | 85 | L/S=1 | P/Al=0.52~0.84 | Si/Al=0.96 | 21.6~96.8 | [ |
60℃(7d) | — | 68 | L/S=1.60~1.75 | — | — | 最大46.3 | [ |
70℃(72h) | 密封 | 85 | 0.45%~0.68% | Al/P=0.9~1.8 | Si/Al=1 | 80~11 | [ |
RT(7d) | 密封 | 85 | L/S=1 | — | SiO2/Al2O3=1.0~2.2 | 最大13.59 | [ |
60℃(24h)、RT(7d、14d、28d) | — | 85 | L/S=0.67或1.25 | P/Al=1 | 热活化或机械研磨 | 最大5.5 | [ |
RT(7d) | 密封 | 85 | L/S=1 | H3PO4/Al2O3=1.0~1.4 | — | 29 | [ |
60℃(24h)、RT(28d) | 干燥 | 10mol/L | L/S=1~1.2 | Al/P=0.8~1.0 | Si/Al=1.6,700~900℃(2h) | 最大67 | [ |
养护温度制度 | 养护环境 | 磷酸质量分数 /% | 水用量 | 磷酸用量 | 原料性质 | 抗压强度 /MPa | 参考文献 |
---|---|---|---|---|---|---|---|
50℃(7d) | 潮湿/干燥 | 85 | W/B=0.3 | P/Al=0.6~1.0 | — | 40~117.7 | [ |
60℃(24h)、RT(21d) | — | 85 | W/B=0.25 | Si/P=2.25~3.50 | d≤125μm | 最大37 | [ |
60℃(24h)、RT(28d) | — | 85 | — | Si/P=2.75 | d≤125μm、100μm、80μm、63μm | 39~54 | [ |
RT(24h)、60℃(24h)、RT(28d) | 密封 | 4~14mol/L | L/S=0.8 | — | — | 36.4~93.8 | [ |
RT(5d)、60℃(24h)、RT(28d) | 密封 | 10mol/L | L/S=0.95 | — | 不同三水铝石含量,d≤90μm | 最大54.41 | [ |
RT(3~28d) | 潮湿 | 85 | H2O/偏高岭土(MK)=0.4 | Si/P=2.75 | — | 最大51.3 | [ |
20℃、40℃和70℃ | 密封 | 85 | Al/H2O=0.15~0.62 | Al/P=1或4 | Si/Al=0.85~1.02,d50=10~6μm | 44~120 | [ |
60℃或RT(15d) | 密封 | 85 | L/S=1 | P/Al=1 | — | 29.9或20.7 | [ |
60℃(24h)、RT(28d) | 密封 | 85 | P/Al=0.5~2 | — | 最大2.1 | [ | |
80℃(24h)、60℃(3d) | 密封 | — | H2O/Al2O3=4∶1 | H3PO4/Al2O3=1 | SiO2/Al2O3=1,d≤45μm | 最大89.3 | [ |
80℃(24h)、60℃(3d) | 密封 | — | H2O/Al2O3=2∶1 | H3PO4/Al2O3=1 | SiO2/Al2O3=3/1,200~1000℃(2h) | 最大60 | [ |
40℃(24h)、60℃(24h) | 密封 | 85 | L/S=1 | P/Al=0.52~0.84 | Si/Al=0.96 | 23.1~123.4 | [ |
40℃(24h)、80℃(24h) | 密封 | 85 | L/S=1 | P/Al=0.52~0.84 | Si/Al=0.96 | 21.6~96.8 | [ |
60℃(7d) | — | 68 | L/S=1.60~1.75 | — | — | 最大46.3 | [ |
70℃(72h) | 密封 | 85 | 0.45%~0.68% | Al/P=0.9~1.8 | Si/Al=1 | 80~11 | [ |
RT(7d) | 密封 | 85 | L/S=1 | — | SiO2/Al2O3=1.0~2.2 | 最大13.59 | [ |
60℃(24h)、RT(7d、14d、28d) | — | 85 | L/S=0.67或1.25 | P/Al=1 | 热活化或机械研磨 | 最大5.5 | [ |
RT(7d) | 密封 | 85 | L/S=1 | H3PO4/Al2O3=1.0~1.4 | — | 29 | [ |
60℃(24h)、RT(28d) | 干燥 | 10mol/L | L/S=1~1.2 | Al/P=0.8~1.0 | Si/Al=1.6,700~900℃(2h) | 最大67 | [ |
原料 | 激发剂 | 氧化物 | 反应生成物 | 最大抗压强度/MPa | 参考文献 |
---|---|---|---|---|---|
偏高岭土 | Al(H2PO4)3 | MgO(镁砂) | 磷镁石(MgHPO4·3H2O) | 53.07 | [ |
偏高岭土 | Al(H2PO4)3 | MgO(镁砂) | 磷镁石(MgHPO4·3H2O) | 53.07 | [ |
偏高岭土 | H3PO4(10mol/L) | Fe2O3(矿物相) | P—O—Si—O—Fe—O | 56.4 | [ |
富铁红土 | H3PO4(10mol/L) | Fe2O3(矿物相) | 无定形磷酸铁相 | 65 | [ |
偏高岭土 | Al(H2PO4)3 | MgO(重烧氧化镁) | 镁磷石和无定形磷酸铝镁 | 13.6 | [ |
偏高岭土 | H3PO4(85%) | MgO | 无定形凝胶相,掺量多则产生镁磷石 | 58.03 | [ |
偏高岭土 | H3PO4(85%) | Fe3O4 | 无定形凝胶 | 62.81 | [ |
偏高岭土 | Al(H2PO4)3 | Al2O3(纳米氧化铝) | 非晶相磷酸铝 | 70.2 | [ |
原料 | 激发剂 | 氧化物 | 反应生成物 | 最大抗压强度/MPa | 参考文献 |
---|---|---|---|---|---|
偏高岭土 | Al(H2PO4)3 | MgO(镁砂) | 磷镁石(MgHPO4·3H2O) | 53.07 | [ |
偏高岭土 | Al(H2PO4)3 | MgO(镁砂) | 磷镁石(MgHPO4·3H2O) | 53.07 | [ |
偏高岭土 | H3PO4(10mol/L) | Fe2O3(矿物相) | P—O—Si—O—Fe—O | 56.4 | [ |
富铁红土 | H3PO4(10mol/L) | Fe2O3(矿物相) | 无定形磷酸铁相 | 65 | [ |
偏高岭土 | Al(H2PO4)3 | MgO(重烧氧化镁) | 镁磷石和无定形磷酸铝镁 | 13.6 | [ |
偏高岭土 | H3PO4(85%) | MgO | 无定形凝胶相,掺量多则产生镁磷石 | 58.03 | [ |
偏高岭土 | H3PO4(85%) | Fe3O4 | 无定形凝胶 | 62.81 | [ |
偏高岭土 | Al(H2PO4)3 | Al2O3(纳米氧化铝) | 非晶相磷酸铝 | 70.2 | [ |
原料 | 激发剂 | 纤维 | 最佳掺量 | 抗压强度/MPa | 抗弯强度/MPa | 参考文献 |
---|---|---|---|---|---|---|
偏高岭土 | 磷酸铝溶液 | 聚乙烯醇(PVA)短纤维 | 1.5% | — | 13.86 | [ |
偏高岭土 | 磷酸铝溶液 | 碳纤维片材 | 3层 | — | 31.32 | [ |
偏高岭土 | H3PO4(85%) | PI纤维(碳纳米管修饰) | 1.5% | 110.4 | 37.9 | [ |
偏高岭土 | H3PO4(85%) | 玄武岩纤维 | 0.5% | 3.4 | 0.7867 | [ |
偏高岭土 | H3PO4(85%) | 玻璃纤维 | 1.3% | 3.45 | 0.825 | [ |
偏高岭土 | H3PO4(85%) | 杉木纤维 | 10% | — | 13.7 | [ |
原料 | 激发剂 | 纤维 | 最佳掺量 | 抗压强度/MPa | 抗弯强度/MPa | 参考文献 |
---|---|---|---|---|---|---|
偏高岭土 | 磷酸铝溶液 | 聚乙烯醇(PVA)短纤维 | 1.5% | — | 13.86 | [ |
偏高岭土 | 磷酸铝溶液 | 碳纤维片材 | 3层 | — | 31.32 | [ |
偏高岭土 | H3PO4(85%) | PI纤维(碳纳米管修饰) | 1.5% | 110.4 | 37.9 | [ |
偏高岭土 | H3PO4(85%) | 玄武岩纤维 | 0.5% | 3.4 | 0.7867 | [ |
偏高岭土 | H3PO4(85%) | 玻璃纤维 | 1.3% | 3.45 | 0.825 | [ |
偏高岭土 | H3PO4(85%) | 杉木纤维 | 10% | — | 13.7 | [ |
发泡剂 | 总孔隙率/% | 热导率/W·m-1·K-1 | 抗压强度/MPa | 体积密度/g·cm-3 | 高温试验温度/℃ | 参考文献 |
---|---|---|---|---|---|---|
石灰石粉 | 30.5~32.1 | 0.133 | 最大6 | 1.316~1.274 | 1000 | [ |
H2O2(MnO2) | 42~56 | 0.17 | 2.09 | 0.66~0.76 | 1100 | [ |
铝粉 | 40~83 | — | 6~13.7 | — | 1450 | [ |
Triton X-100 | 78.3 | — | 0.64 | 0.43 | 1100 | [ |
H2O2(MnO2) | 42~56 | 最小0.17 | 最大2.73 | 0.68~0.73 | 1100 | [ |
H2O2 | 55~64 | — | 最大1.17 | 最小0.336 | 1100 | [ |
石灰石粉 | 69~76 | 0.07~0.09 | — | 0.6~0.73 | 1000 | [ |
发泡剂 | 总孔隙率/% | 热导率/W·m-1·K-1 | 抗压强度/MPa | 体积密度/g·cm-3 | 高温试验温度/℃ | 参考文献 |
---|---|---|---|---|---|---|
石灰石粉 | 30.5~32.1 | 0.133 | 最大6 | 1.316~1.274 | 1000 | [ |
H2O2(MnO2) | 42~56 | 0.17 | 2.09 | 0.66~0.76 | 1100 | [ |
铝粉 | 40~83 | — | 6~13.7 | — | 1450 | [ |
Triton X-100 | 78.3 | — | 0.64 | 0.43 | 1100 | [ |
H2O2(MnO2) | 42~56 | 最小0.17 | 最大2.73 | 0.68~0.73 | 1100 | [ |
H2O2 | 55~64 | — | 最大1.17 | 最小0.336 | 1100 | [ |
石灰石粉 | 69~76 | 0.07~0.09 | — | 0.6~0.73 | 1000 | [ |
69 | 帅勤. 磷酸基地聚合物多孔材料的制备及性能研究[D]. 绵阳: 西南科技大学, 2020. |
SHUAI Qin. Preparation and properties of phosphoric acid-based geopolymer foams[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
70 | 禤小欣. 磷酸基地聚物杉木纤维复合材料的制备及其性能研究[D]. 南宁: 南宁师范大学, 2020. |
XUAN Xiaoxin. Study on preparation and properties of phosphoric acid-based geopolymers Chinese fir fiber composites[D]. Nanning: Nanning Normal University, 2020. | |
71 | LIU Leping, CUI Xuemin, QIU Shuheng, et al. Preparation of phosphoric acid-based porous geopolymers[J]. Applied Clay Science, 2010, 50(4): 600-603. |
72 | SELLAMI M, BARRE M, TOUMI M. Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin[J]. Applied Clay Science, 2019, 180: 105192. |
73 | NOBOUASSIA BEWA C, TCHAKOUTÉ H K, FOTIO D, et al. Water resistance and thermal behavior of metakaolin-phosphate-based geopolymer cements[J]. Journal of Asian Ceramic Societies, 2018, 6(3): 271-283. |
74 | BAI C Y, CONTE A, COLOMBO P. Open-cell phosphate-based geopolymer foams by frothing[J]. Materials Letters, 2017, 188: 379-382. |
75 | CELERIER H, JOUIN J, GHARZOUNI A, et al. Relation between working properties and structural properties from 27Al, 29Si and 31P NMR and XRD of acid-based geopolymers from 25 to 1000℃[J]. Materials Chemistry and Physics, 2019, 228: 293-302. |
76 | 安然, 徐中慧, 帅勤, 等. 磷酸基地聚合物多孔材料的制备及其隔热防火性能研究[J]. 硅酸盐通报, 2021, 40(4): 1258-1265. |
AN Ran, XU Zhonghui, SHUAI Qin, et al. Preparation of phosphoric acid-based geopolymer foams and its fire-resistance[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1258-1265. | |
77 | SHUAI Qin, XU Zhonghui, YAO Zhengzhen, et al. Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide[J]. Materials Letters, 2020, 263: 127228. |
78 | LASSINANTTI GUALTIERI M, ROMAGNOLI M, GUALTIERI A F. Preparation of phosphoric acid-based geopolymer foams using limestone as pore forming agent - thermal properties by in situ XRPD and Rietveld refinements[J]. Journal of the European Ceramic Society, 2015, 35(11): 3167-3178. |
79 | 牛丽丽, 李玉香, 马雪. 磷酸基地质聚合物抗侵蚀性研究[J]. 西南科技大学学报, 2020, 35(3): 31-36. |
NIU Lili, LI Yuxiang, MA Xue. Study on the corrosion resistance of phosphoric acid-based geopolymer[J]. Journal of Southwest University of Science and Technology, 2020, 35(3): 31-36. | |
80 | 牛丽丽. 磷酸基地质聚合物的制备及固化模拟中放α废液的研究[D]. 绵阳: 西南科技大学, 2020. |
NIU Lili. Study on preparation of phosphoric acid-based geopolymer and immobilization of simulation medium level alpha liquid waste[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
81 | 何流. 磷酸基地质聚合物的结构演变及固化模拟核素研究[D]. 绵阳: 西南科技大学, 2019. |
HE Liu. Study on structural evolution and solidification of simulated nuclide of phosphoric acid-based geopolymer[D]. Mianyang: Southwest University of Science and Technology, 2019. | |
82 | PU Shaoyun, ZHU Zhiduo, SONG Weilong, et al. A novel acidic phosphoric-based geopolymer binder for lead solidification/stabilization[J]. Journal of Hazardous Materials, 2021, 415: 125659. |
83 | DONG Teng, XIE Shuibo, WANG Jingsong, et al. Solidification and stabilization of spent TBP/OK organic liquids in a phosphate acid-based geopolymer[J]. Science and Technology of Nuclear Installations, 2020, 2020: 8094205. |
84 | CUI Xuemin, LIU Leping, HE Yan, et al. A novel aluminosilicate geopolymer material with low dielectric loss[J]. Materials Chemistry and Physics, 2011, 130(1/2): 1-4. |
85 | DOUIRI H, LOUATI S, BAKLOUTI S, et al. Structural and dielectric comparative studies of geopolymers prepared with metakaolin and Tunisian natural clay[J]. Applied Clay Science, 2017, 139: 40-44. |
86 | SELLAMI M, BARRE M, TOUMI M. The new challenge of acid-based geopolymers synthesized with the incorporation of lithium ions as cathode materials for lithium-ion batteries[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(8): 3126-3131. |
1 | DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. |
2 | 张耀君, 杨梦阳, 康乐, 等. 一类新型碱激发胶凝材料催化剂的研究进展[J]. 无机材料学报, 2016, 31(3): 225-233. |
ZHANG Yaojun, YANG Mengyang, KANG Le, et al. Research progresses of new type alkali-activated cementitious material catalyst[J]. Journal of Inorganic Materials, 2016, 31(3): 225-233. | |
3 | 翁履谦, 宋申华. 新型地质聚合物胶凝材料[J]. 材料导报, 2005, 19(2): 67-68. |
WENG Lyuqian, SONG Shenhua. Development of novel cementious geopolymers[J]. Materials Review, 2005, 19(2): 67-68, 80. | |
4 | 孙道胜, 王爱国, 胡普华. 地质聚合物的研究与应用发展前景[J]. 材料导报, 2009, 23(7): 61-65. |
SUN Daosheng, WANG Aiguo, HU Puhua. Research of geopolymer and its applications and development prospects[J]. Materials Review, 2009, 23(7): 61-65. | |
5 | AMRAN Y H M, ALYOUSEF R, ALABDULJABBAR H, et al. Clean production and properties of geopolymer concrete: a review[J]. Journal of Cleaner Production, 2020, 251: 119679. |
6 | YU Haoyang, XU Mengxue, CHEN Chaoni, et al. A review on the porous geopolymer preparation for structural and functional materials applications[J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 1793-1813. |
7 | ZHANG Xiaolong, ZHANG Shiyu, LIU Hui, et al. Disposal of mine tailings via geopolymerization[J]. Journal of Cleaner Production, 2021, 284: 124756. |
8 | COPPOLA B, TULLIANI J M, ANTONACI P, et al. Role of natural stone wastes and minerals in the alkali activation process: a review[J]. Materials, 2020, 13(10): E2284. |
9 | WAGH A S. Introduction to chemically bonded ceramics[M]// Chemically Bonded Phosphate Ceramics. Amsterdam: Elsevier, 2004: 1-13. |
87 | PENGOU M, NGOUNÉ B, TCHAKOUTÉ H K, et al. Correction to: utilization of geopolymer cements as supercapacitors: influence of the hardeners on their properties[J]. SN Applied Sciences, 2020, 2(8): 1. |
88 | PENGOU M, NGASSA G B P, BOUTIANALA M, et al. Geopolymer cement-modified carbon paste electrode: application to electroanalysis of traces of lead(II) ions in aqueous solution[J]. Journal of Solid State Electrochemistry, 2021, 25(4): 1183-1195. |
10 | COSTATO M. Acid-base cements. Their biomedical and industrial applications[J]. Il Nuovo Cimento D, 1995, 17(5): 545. |
11 | TCHAKOUTÉ H K, RÜSCHER C H. Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: a comparative study[J]. Applied Clay Science, 2017, 140: 81-87. |
12 | LIU Leping, CUI Xuemin, HE Yan, et al. Study on the dielectric properties of phosphoric acid-based geopolymers[J]. Materials Science Forum, 2010, 663/664/665: 538-541. |
13 | PERERA D S, HANNA J V, DAVIS J, et al. Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials[J]. Journal of Materials Science, 2008, 43(19): 6562-6566. |
14 | WANG Yanshuai, ALREFAEI Yazan, DAI Jianguo. Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative review[J]. Frontiers in Materials, 2019, 6: 106. |
15 | ZRIBI M, BAKLOUTI S. Phosphate-based geopolymers: a critical review[J]. Polymer Bulletin, 2022, 79(9): 6827-6855. |
16 | 曹德光, 苏达根, 路波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11): 1385-1389. |
CAO Deguang, SU Dagen, LU Bo, et al. Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid [J]. Journal of the Chinese Ceramic Society, 2005, 33(11): 1385-1389. | |
17 | 何流, 马雪, 李良锋, 等. Al2O3·nSiO2-mH3PO4磷酸基地质聚合物的制备与结构表征[J]. 人工晶体学报, 2018, 47(12): 2527-2533. |
HE Liu, MA Xue, LI Liangfeng, et al. Preparation and structural characterization of Al2O3·nSiO2-mH3PO4 phosphoric acid-based geopolymer[J]. Journal of Synthetic Crystals, 2018, 47(12): 2527-2533. | |
18 | 周新涛, 苏达根, 钟明峰. 铝硅磷质胶凝材料的微观结构与性能[J]. 硅酸盐学报, 2007, 35(1): 105-108. |
ZHOU Xintao, SU Dagen, ZHONG Mingfeng. Microstructure and performance of cementing material based on aluminosilicate and phosphate[J]. Journal of the Chinese Ceramic Society, 2007, 35(1): 105-108. | |
19 | 刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁: 广西大学, 2012. |
LIU Leping. Reaction mechanism and application study of phosphoric acid-based geopolymers[D]. Nanning: Guangxi University, 2012. | |
20 | 刘建, 刘派, 丁铸. 磷酸盐基矿聚物材料的制备与机理研究[J]. 深圳大学学报(理工版), 2020, 37(6): 597-603. |
LIU Jian, LIU Pai, DING Zhu. Preparation and mechanism of phosphate based geopolymer[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(6): 597-603. | |
21 | LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymerization kinetics: effect of clay particle size[J]. Applied Clay Science, 2016, 132/133: 571-578. |
22 | DOUIRI H, LOUATI S, BAKLOUTI S, et al. Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4 [J]. Materials Letters, 2014, 116: 9-12. |
23 | TCHAKOUTÉ H K, RÜSCHER C H, KAMSEU E, et al. Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements[J]. Applied Clay Science, 2017, 147: 184-194. |
24 | TCHAKOUTÉ H K, RÜSCHER C H, KAMSEU E, et al. The influence of gibbsite in Kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements[J]. Materials Chemistry and Physics, 2017, 199: 280-288. |
25 | MORSY M S, RASHAD A M, SHOUKRY H, et al. Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation[J]. Construction and Building Materials, 2019, 229: 117088. |
26 | GUO Changming, WANG Kaituo, LIU Mengyi, et al. Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid[J]. Ceramics International, 2016, 42(7): 9287-9291. |
27 | LIU Leping, CUI Xuemin, HE Yan, et al. The phase evolution of phosphoric acid-based geopolymers at elevated temperatures[J]. Materials Letters, 2012, 66(1): 10-12. |
28 | DONG Teng, XIE Shuibo, WANG Jingsong, et al. Properties and characterization of a metakaolin phosphate acid-based geopolymer synthesized in a humid environment[J]. Journal of the Australian Ceramic Society, 2020, 56(1): 175-184. |
29 | MATHIVET V, JOUIN J, GHARZOUNI A, et al. Acid-based geopolymers: understanding of the structural evolutions during consolidation and after thermal treatments[J]. Journal of Non-Crystalline Solids, 2019, 512: 90-97. |
30 | ZRIBI M, BAKLOUTI S. Investigation of Phosphate based geopolymers formation mechanism[J]. Journal of Non-Crystalline Solids, 2021, 562: 120777. |
31 | LOUATI S, BAKLOUTI S, SAMET B. Geopolymers based on phosphoric acid and illito-kaolinitic clay[J]. Advances in Materials Science and Engineering, 2016, 2016: 2359759. |
32 | 邢书银. 利用粉煤灰制备地质聚合物的实验研究[D]. 西宁: 青海大学, 2016. |
XING Shuyin. Study on preparation of geopolymer with fly ash[D]. Xining: Qinghai University, 2016. | |
33 | GUO Haozhe, YUAN Peng, ZHANG Baifa, et al. Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin[J]. Journal of Cleaner Production, 2021, 285: 125430. |
34 | WANG Yanshuai, ALREFAEI Yazan, DAI Jianguo. Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer[J]. Cement and Concrete Research, 2020, 127: 105932. |
35 | 梁郁, 钱觉时, 王智. 磷酸激发粉煤灰的试验研究[J]. 粉煤灰综合利用, 2004, 17(3): 44-45. |
LIANG Yu, QIAN Jueshi, WANG Zhi. Testing research on fly ash activated by phosphoric acid[J]. Fly Ash Comprehensive Utilization, 2004, 17(3): 44-45. | |
36 | DJON LI NDJOCK B I, ROBAYO-SALAZAR R A, DE GUTIÉRREZ R M, et al. Phosphoric acid activation of volcanic ashes: influence of the molar ratio R = (MgO + CaO)/P2O5 on reactivity of volcanic ash and strength of obtained cementitious material[J]. Journal of Building Engineering, 2021, 33: 101879. |
37 | DJON LI NDJOCK B I, BAENLA J, MBAH J B B, et al. Amorphous phase of volcanic ash and microstructure of cement product obtained from phosphoric acid activation[J]. SN Applied Sciences, 2020, 2(4): 1-10. |
38 | DJOBO J N Y, STEPHAN D, ELIMBI A. Setting and hardening behavior of volcanic ash phosphate cement[J]. Journal of Building Engineering, 2020, 31: 101427. |
39 | 刘梦怡. 失效磷酸基抛光液制备地质聚合物的合成、结构和性能表征[D]. 南宁: 广西大学, 2014. |
LIU Mengyi. Preparation, synthesis, structure and performance characterization of invalid phosphoric acid-based polishing liquid geopolymer[D]. Nanning: Guangxi University, 2014. | |
40 | HAN Yaocong, CUI Xuemin, Xuesen LYU, et al. Preparation and characterization of geopolymers based on a phosphoric-acid-activated electrolytic manganese dioxide residue[J]. Journal of Cleaner Production, 2018, 205: 488-498. |
41 | WANG Yanshuai, PROVIS John L, DAI Jianguo. Role of soluble aluminum species in the activating solution for synthesis of silico-aluminophosphate geopolymers[J]. Cement and Concrete Composites, 2018, 93: 186-195. |
42 | 卢灿. 磷酸盐矿物键合材料的制备及其机理研究[D]. 深圳: 深圳大学, 2016. |
LU Can. Mixproportion and mechanism analysis of chemically bonded phosphate ceramic material[D]. Shenzhen: Shenzhen University, 2016. | |
43 | CELERIER H, JOUIN J, TESSIER-DOYEN N, et al. Influence of various metakaolin raw materials on the water and fire resistance of geopolymers prepared in phosphoric acid[J]. Journal of Non-Crystalline Solids, 2018, 500: 493-501. |
44 | ZRIBI M, SAMET B, BAKLOUTI S. Effect of curing temperature on the synthesis, structure and mechanical properties of phosphate-based geopolymers[J]. Journal of Non-Crystalline Solids, 2019, 511: 62-67. |
45 | CELERIER H, JOUIN J, MATHIVET V, et al. Composition and properties of phosphoric acid-based geopolymers[J]. Journal of Non-Crystalline Solids, 2018, 493: 94-98. |
46 | 邢书银, 田亮亮, 王海霞, 等. 磷酸基偏高岭土地质聚合物研究[J]. 青海大学学报(自然科学版), 2015, 33(6): 30-35. |
XING Shuyin, TIAN Liangliang, WANG Haixia, et al. Study on phosphoric acid-metakaolin based geopolymer[J]. Journal of Qinghai University (Natural Science Edition), 2015, 33(6): 30-35. | |
47 | ZRIBI M, SAMET B, BAKLOUTI S. Mechanical, microstructural and structural investigation of phosphate-based geopolymers with respect to P/Al molar ratio[J]. Journal of Solid State Chemistry, 2020, 281: 121025. |
48 | HE Yan, LIU Leping, HE Liping, et al. Characterization of chemosynthetic H3PO4-Al2O3-2SiO2 geopolymers[J]. Ceramics International, 2016, 42(9): 10908-10912. |
49 | LOUATI S, HAJJAJI W, BAKLOUTI S, et al. Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay[J]. Applied Clay Science, 2014, 101: 60-67. |
50 | LIN Hui, LIU Hui, LI Yue, et al. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures[J]. Cement and Concrete Research, 2021, 144: 106425. |
51 | 董腾, 邹艺璇, 宋培, 等. 微波养护偏高岭土磷酸基地聚物的特征与表征[J]. 中国粉体技术, 2020, 26(4): 52-58. |
DONG Teng, ZOU Yixuan, SONG Pei, et al. Characteristics and characterization of metakaolin phosphoric acid-based geopolymer cured by microwave[J]. China Powder Science and Technology, 2020, 26(4): 52-58. | |
52 | MATHIVET V, JOUIN J, PARLIER M, et al. Control of the alumino-silico-phosphate geopolymers properties and structures by the phosphorus concentration[J]. Materials Chemistry and Physics, 2021, 258: 123867. |
53 | GAO Li, XIA Chulin, HONG Xuecai, et al. Effect of SiO2/Al2O3 molar ratio on microstructure and properties of phosphoric acid-based metakaolin geopolymerss[C]// 2016 International Conference on Material Science and Civil Engineering. Guilin, China, 2017: 307-315. |
54 | ZRIBI M, SAMET B, BAKLOUTI S. Screening of factors influencing phosphate-based geopolymers consolidation time, using plackett-burman design[M]//Advances in Materials, Mechanics and Manufacturing. Cham: Springer, 2020: 115-122. |
55 | DEROUICHE R, BAKLOUTI S. Phosphoric acid based geopolymerization: effect of the mechanochemical and the thermal activation of the Kaolin[J]. Ceramics International, 2021, 47(10): 13446-13456. |
56 | BEWA C N, TCHAKOUTÉ H K, BANENZOUÉ C, et al. Acid-based geopolymers using waste fired brick and different metakaolins as raw materials[J]. Applied Clay Science, 2020, 198: 105813. |
57 | KAZE C R, LECOMTE-NANA G L, KAMSEU E, et al. Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: a comparative study[J]. Cement and Concrete Research, 2021, 140: 106320. |
58 | ZHANG Baifa, GUO Haozhe, YUAN Peng, et al. Novel acid-based geopolymer synthesized from nanosized tubular halloysite: the role of precalcination temperature and phosphoric acid concentration[J]. Cement and Concrete Composites, 2020, 110: 103601. |
59 | LASSINANTTI GUALTIERI M, ROMAGNOLI M, POLLASTRI S, et al. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: mechanical and microstructural properties[J]. Cement and Concrete Research, 2015, 67: 259-270. |
60 | GAO Li, ZHENG Youxiong, TANG Yan, et al. Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers[J]. Heliyon, 2020, 6(4): e03853. |
61 | WANG Yanshuai, DAI Jianguo, DING Zhu, et al. Phosphate-based geopolymer: formation mechanism and thermal stability[J]. Materials Letters, 2017, 190: 209-212. |
62 | DOUIRI H, LOUATI S, BAKLOUTI S, et al. Enhanced dielectric performance of metakaolin-H3PO4 geopolymers[J]. Materials Letters, 2016, 164: 299-302. |
63 | 李浩天. 掺杂石墨基地质聚合物的制备及其导电性能研究[D]. 南宁: 广西大学, 2019. |
LI Haotian. Study on preparation and conductive properties of doped graphite-based geopolymers[D]. Nanning: Guangxi University, 2019. | |
64 | MAJDOUBI H, HADDAJI Y, MANSOURI S, et al. Thermal, mechanical and microstructural properties of acidic geopolymer based on Moroccan kaolinitic clay[J]. Journal of Building Engineering, 2021, 35: 102078. |
65 | WANG Yanshuai, ALREFAEI Yazan, DAI Jianguo. Improvement of early-age properties of silico-aluminophosphate geopolymer using dead burnt magnesia[J]. Construction and Building Materials, 2019, 217: 1-11. |
66 | 姚正珍. 磷酸基地聚合物的制备及耐高温耐腐蚀性能研究[D]. 绵阳: 西南科技大学, 2020. |
YAO Zhengzhen. Synthesis, high-temperature and corrosion ristance of phosphoric acid based geopolymer[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
67 | 钟明峰, 张志杰, 周杰, 等. 纳米氧化铝增强铝硅磷质矿物键合材料的合成和性能[J]. 贵州大学学报(自然科学版), 2009, 26(3): 103-105. |
ZHONG Mingfeng, ZHANG Zhijie, ZHOU Jie, et al. Synthesis and mechanical properties of nano-alumina reinforced acid-activated metakaolinite-based geopolymer[J]. Journal of Guizhou University(Natural Science Edition),2009, 26(3): 103-105. | |
68 | YANG Tao, HAN Enlin, WANG Xiaodong, et al. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers[J]. Applied Surface Science, 2017, 416: 200-212. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[3] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
[4] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[5] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[6] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[7] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[8] | LYU Xuedong, LUO Faliang, LIN Haitao, SONG Danqing, LIU Yi, NIU Ruixue, ZHENG Liuchun. Recent progress of synthesis technology and gas barrier research of poly(butylene succinate) [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2546-2554. |
[9] | XU Yuzhen, JIANG Dahua, LIU Jingtao, CHEN Pu. Preparation and properties of fly ash based phase change energy storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2595-2605. |
[10] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[11] | SHANG Xiaobiao, LI Guangchao, XIAO Liping, BAI Yongzhen, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561. |
[12] | LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian. Progress on polymethacrylate as viscosity index improvers for lube oil [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571. |
[13] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[14] | ZHU Qichen, WU Zhangyong, WANG Zhiqiang, JIANG Jiajun, LI Xiang. Sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5101-5110. |
[15] | TIAN Yazhou, HU Yujing, LI Jiyou, REN Jiangyan, WANG Liwei, WANG Xiuli, DING Ying, CHENG Jue, ZHANG Junying. Synthesis, curing kinetics and properties of vanilla alcohol-based epoxy resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 477-484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |