Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5259-5271.DOI: 10.16085/j.issn.1000-6613.2022-2228
• Materials science and technology • Previous Articles Next Articles
XU Na(), WANG Guodong, TAO Yanan
Received:
2022-12-01
Revised:
2023-02-11
Online:
2023-11-11
Published:
2023-10-15
Contact:
XU Na
通讯作者:
徐娜
作者简介:
徐娜(1980—),女,博士,高级实验师,研究方向为生物质材料的资源化利用。E-mail:xuna19992003@163.com。
基金资助:
CLC Number:
XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271.
徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2228
压力传感器类型 | 工作原理 | 灵敏度 | 响应 时间 | 线性 范围 | 优点 | 不足 |
---|---|---|---|---|---|---|
压阻式 | 压阻效应 | 较高 | 短 | 宽 | 结构简单、分辨率高,功耗低 | 灵敏度受温度影响较大 |
电容式 | 电容变化 | 相对较低 | 短 | 较小 | 具有良好的线性度和较低的压力检测极限 | 灵敏度受面积的限制,可靠性低 |
压电式 | 压电效应 | 高 | 较长 | 宽 | 体积小、动态性好、耐高温 | 电流响应较差,成本较高 |
摩擦电式 | 摩擦电和静电感应的耦合效应 | 高 | 短 | 较小 | 低成本、高输出性能、可持续性 | 可靠性低,受温度和湿度影响较大 |
压力传感器类型 | 工作原理 | 灵敏度 | 响应 时间 | 线性 范围 | 优点 | 不足 |
---|---|---|---|---|---|---|
压阻式 | 压阻效应 | 较高 | 短 | 宽 | 结构简单、分辨率高,功耗低 | 灵敏度受温度影响较大 |
电容式 | 电容变化 | 相对较低 | 短 | 较小 | 具有良好的线性度和较低的压力检测极限 | 灵敏度受面积的限制,可靠性低 |
压电式 | 压电效应 | 高 | 较长 | 宽 | 体积小、动态性好、耐高温 | 电流响应较差,成本较高 |
摩擦电式 | 摩擦电和静电感应的耦合效应 | 高 | 短 | 较小 | 低成本、高输出性能、可持续性 | 可靠性低,受温度和湿度影响较大 |
1 | WU Yuting, YAN Tao, PAN Zhijuan. Wearable carbon-based resistive sensors for strain detection: A Review[J]. IEEE Sensors Journal, 2021, 21(4): 4030-4043. |
2 | DING Yichun, XU Tao, OBIORA Onyilagha, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-6704. |
3 | WANG Zhenwu, CONG Yang, FU Jun. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8(16): 3437-3459. |
4 | CUI Z, Felipe R P, ZHU Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17836-17842. |
5 | WU Jin, WU Zixuan, WEI Yaoming, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19069-19079. |
6 | LIU Haoran, ZHANG Zhenyi, GE Jun, et al. A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection[J]. Journal of Materials Science & Technology, 2019, 35(1): 176-180. |
7 | SOUMALYA Kundu, RAHUL Majumder, Ghosh RIA, et al. Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: Wearable and flexible human respiration monitoring application[J]. Journal of Materials Science, 2020, 55(9): 3884-3901. |
8 | AN Qingbo, GAN Shiyu, XU Jianan, et al. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring[J]. Electrochemistry Communications, 2019, 107: 106553. |
9 | GAO Yuyu, YAN Cheng, HUANG Haichao, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor[J]. Advanced Functional Materials, 2020, 30(11): 1909603. |
10 | NASIRI S, KHOSRAVANI M R. Progress and challenges in fabrication of wearable sensors for health monitoring[J]. Sensors and Actuators A: Physical, 2020, 312: 112105. |
11 | SEYEDIN Shayan, ZHANG Peng, NAEBE Maryam, et al. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications[J]. Materials Horizons, 2019, 6(2): 219-249. |
12 | HUANG Y, FAN X Y, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 2019, 29(12): 1808509. |
13 | KIM Y R, KIM M P, PARK J, et al. Binary spiky/spherical nanoparticle films with hierarchical micro/nanostructures for high-performance flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 58403-58411. |
14 | WANG Dongyue, ZHANG Dongzhi, LI Peng, et al. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nano-Micro Letters, 2021, 13(1): 57 |
15 | ESCOBEDO Pablo, BHATTACHARJEE Mitradip, NIKBAKHTNASRABADI Fatemeh, et al. Smart bandage with wireless strain and temperature sensors and batteryless NFC tag[J]. IEEE Internet of Things Journal, 2020, 8(6): 5093-5100. |
16 | CHU Na, LIANG Qinjun, HAO Wen, et al. Microbial electrochemical sensor for water biotoxicity monitoring[J]. Chemical Engineering Journal, 2021, 404: 127053. |
17 | ZHU Guanjun, REN Penggang, WANG Jin, et al. A highly sensitive and broad-range pressure sensor based on polyurethane mesodome arrays embedded with silver nanowires[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19988-19999. |
18 | LI Wei, JIN Xin, HAN Xing, et al. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19211-19220. |
19 | LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021, 87: 106181. |
20 | WANG Xiangfu, YU Jihong, CUI Yixuan, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A: Physical, 2021, 330: 112838. |
21 | JAYATHILAKA W A, QI K, QIN Y, et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors[J]. Advanced Material, 2019, 31(7): e1805921. |
22 | KIM S R, KIM J H, PARK J W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26407-26416. |
23 | WON D J, YOO D W, KIM J W. Effect of a microstructured dielectric layer on a bending-insensitive capacitive-type touch sensor with shielding[J]. ACS Applied Electronic Materials, 2020, 2(3): 846-854. |
24 | ELSAYES Ahmed, SHARMA Vipul, YIANNACOU Kyriacos, et al. Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer[J]. Advanced Sustainable Systems, 2020, 4(9): 2000056. |
25 | PIERRE C U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187. |
26 | YANG Ye, PAN Hong, XIE Guangzhong, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A: Physical, 2020, 301: 111789. |
27 | LU Lijun, ZHAO Ning, LIU Jingquan, et al. Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency[J]. Journal of Materials Chemistry C, 2021, 9(29): 9309-9318. |
28 | MISHRA R B, EL-ATAB N, HUSSAIN A M, et al. Recent progress on flexible capacitive pressure sensors: From design and materials to applications[J]. Advanced Materials Technologies, 2021, 6(4): 2001023. |
29 | WANG Yuejiao, LI Xiang, FAN Sufeng, et al. Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL)[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8901-8908. |
30 | CAI Y W, ZHANG X N, WANG G G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin[J]. Nano Energy, 2021, 81: 105663. |
31 | LOU Mengna, IBRAHIM Abdalla, ZHU Miaomiao, et al. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1597-1605. |
32 | FIORILLO A S, CRITELLO C D, PULLANO A S, et al. Theory, technology and applications of piezoresistive sensors: A review[J]. Sensors and Actuators A: Physical, 2018, 281: 156-175. |
33 | LI Lin, ZHENG Jiahong, CHEN Jing, et al. Flexible pressure sensors for biomedical applications: From ex vivo to in vivo [J]. Advanced Materials Interfaces, 2020, 7(17): 2000743. |
34 | ZHU Xiaobo, QIAN Zhentao, CHEN Xue, et al. Electrohydrodynamics-printed silver nanoparticle flexible pressure sensors with improved gauge factor[J]. IEEE Sensors Journal, 2021, 21(5): 5836-5844. |
35 | GUO Rui, LIU Jing. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions[J]. Journal of Micromechanics and Microengineering, 2017, 27(10): 104002. |
36 | ZHAI Wei, XIA Quanjun, ZHOU Kangkang, et al. Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability[J]. Chemical Engineering Journal, 2019, 372: 373-382. |
37 | ZHU Jing, ZHANG Qiang, CHENG Yongqiang, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors based on graphene-PDMS@sponge[J]. Journal of Micromechanics and Microengineering, 2020, 30(8): 085012. |
38 | HERREN Blake, WEBSTER Vincent, DAVIDSON Eric, et al. PDMS sponges with embedded carbon nanotubes as piezoresistive sensors for human motion detection[J]. Nanomaterials, 2021, 11(7): 1740. |
39 | LI Yunxia, JIANG Changjun, HAN Weihua. Extending the pressure sensing range of porous polypyrrole with multiscale microstructures[J]. Nanoscale, 2020, 12(3): 2081-2088. |
40 | PENG Zhongquan, ZHANG Xiaodong, ZHAO Chunmei, et al. Hydrophobic and stable MXene/reduced graphene oxide/polymer hybrid materials pressure sensors with an ultrahigh sensitive and rapid response speed pressure sensor for health monitoring[J]. Materials Chemistry and Physics, 2021, 271: 124729. |
41 | HUANG Siya, LIU Yuan, ZHAO Yue, et al. Flexible electronics: Stretchable electrodes and their future[J]. Advanced Functional Materials, 2019, 29(6): 1805924. |
42 | YIN Mingjie, ZHANG Yangxi, YIN Zhigang, et al. Wearable sensors: Micropatterned elastic gold-nanowire/polyacrylamide composite hydrogels for wearable pressure sensors[J]. Advanced Materials Technologies, 2018, 3(7): 1870029. |
43 | BANG Soa, Jaeeun LIM, CHUN Sungwoo, et al. A flexible graphene-polydimethylsiloxane nanocomposite force sensor with linear response across a wide pressure detection range[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(3): 1630-1634. |
44 | SU Yue, ZHANG Wei, CHEN Shanming, et al. Piezoresistive electronic-skin sensors produced with self-channeling laser microstructured silicon molds[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 786-792. |
45 | HUANG Jieyu, LI Dawei, ZHAO Min, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366. |
46 | CHEN Shiqiang, WANG Yidi, FEI Bin, et al. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane[J]. Chemical Engineering Journal, 2022, 430: 131980. |
47 | ZHOU Hongwei, WANG Zhiwen, ZHAO Weifeng, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers[J]. Chemical Engineering Journal, 2021, 403: 126307. |
48 | ABADI M B, WEISSING R, WILHELM M, et al. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34996-35007. |
49 | HE Jiang, ZHANG Yufei, ZHOU Runhui, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J]. Journal of Materiomics, 2020, 6(1): 86-101. |
50 | LI T T, WANG Y T, PENG H K, et al. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105685. |
51 | LEE D H, CHUANG C H, SHAIKH M O, et al. Flexible piezoresistive tactile sensor based on polymeric nanocomposites with grid-type microstructure[J]. Micromachines, 2021, 12(4): 452. |
52 | QASIM S B, ZAFAR M S, SHARIQ N, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine[J]. International Journal of Molecular Sciences, 2018, 19(2): 407. |
53 | LI Jianpeng, YANG Yifan, WANG Qiao, et al. Design of size-controlled Au nanoparticles loaded on the surface of ZnO for ethanol detection[J]. CrystEngComm, 2021, 23(4): 783-792. |
54 | HE Jiang, XIAO Peng, LU Wei, et al. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy, 2019, 59: 422-433. |
55 | JI Bing, ZHOU Qian, WU Jinbo, et al. Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 31021-31035. |
56 | LEE Youngoh, MYOUNG Jinyoung, CHO Soowon, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano, 2021, 15(1): 1795-1804. |
57 | AJEEV A, JAVAREGOWDA B H, ALI A, et al. Ultrahigh sensitive carbon-based conducting rubbers for flexible and wearable human-machine intelligence sensing[J]. Advanced Materials Technologies, 2020, 5(12): 2000690. |
58 | GOGURLA Narendar, KIM Sunghwan. Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human-machine interfaces[J]. Advanced Energy Materials, 2021, 11(29): 2100801. |
59 | XU Mengting, CAI Haihua, LIU Zulan, et al. Breathable, degradable piezoresistive skin sensor based on a sandwich structure for high-performance pressure detection[J]. Advanced Electronic Materials, 2021, 7(10): 2100368. |
60 | MA Zhong, LI Sheng, WANG Huiting, et al. Advanced electronic skin devices for healthcare applications[J]. Journal of Materials Chemistry B, 2019, 7(2): 173-197. |
61 | WANG Xuechuan, YUE Ouyang, LIU Xinhua, et al. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure[J]. Chemical Engineering Journal, 2020, 392: 123672. |
62 | XU Shihong, FAN Zeng, YANG Shuaitao, et al. Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers[J]. Chemical Engineering Journal, 2021, 404: 126064. |
63 | WU Xiaodong, KHAN Yasser, TING Jonathan, et al. Large-area fabrication of high-performance flexible and wearable pressure sensors[J]. Advanced Electronic Materials, 2020, 6(2): 1901310. |
64 | GAO Jiefeng, LI Bei, HUANG Xuewu, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring[J]. Chemical Engineering Journal, 2019, 373: 298-306. |
65 | CAI Yichen, SHEN Jie, GE Gang, et al. Stretchable Ti3C2T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano, 2018, 12(1): 56-62. |
[1] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
[2] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[3] | BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883. |
[4] | Yongtao NI, Qinxin ZHAO, Yong GUI, Yungang WANG, Huaishuang SHAO. Structural design and numerical analysis of two-stagelow-pressure ejector [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 69-76. |
[5] | Xiaozhi XU, Biao LI, Kaiqiang SHI, Siyuan DONG, Zuchao JIN, Jingbin HAN. Recent advances in LDHs-based gas barrier materials [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2177-2186. |
[6] | Famei QIN, Xueqing QIU, Chuan SUN, Zixian DING, Zhiqiang FANG. Research progress in nanocellulose for the removal of heavy metal ions in water [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3390-3401. |
[7] | YU Bin, ZHAO Xiaoming, SUN Tian. Design and properties of nanofiber filter based on fiber orientation [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3966-3973. |
[8] | SHANG Yang, WANG Yueshe. Structural design and numerical analysis of single nozzle low pressure ejector [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 107-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |