[1] 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(4):1305-1313. HU M, ZHONG Z X, XING W H. Development of nanofiber membrane for air purification[J]. Chemical Industry and Engineering Progress, 2018, 37(4):1305-1313.
[2] BORTOLASSI A C C, GUERRA V G, AGUIAR M L. Characterization and evaluate the efficiency of different filter media in removing nanoparticles[J]. Separation and Purification Technology, 2017,175:79-86.
[3] PRADHAN A K, DAS D, CHATTOPADHYAY R, et al. An approach of optimal designing of nonwoven air filter media:effect of fibre fineness[J]. Journal of Industrial Textiles, 2016,45(6):1308-1321.
[4] HUANG H, WANG K, ZHAO H. Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration[J]. Powder Technology, 2016, 292:232-241.
[5] SALEH A M, TAFRESHI H V. On the filtration performance of dust-loaded trilobal fibers[J]. Separation and Purification Technology, 2015,149:295-307.
[6] FOTOVATI S, TAFRESHI H V, POURDEYHIMI B. Analytical expressions for predicting performance of aerosol filtration media made up of trilobal fibers[J]. Journal of Hazardous Materials, 2011, 186(2):1503-1512.
[7] SUN Z W, WEN J H, LUO X, et al. An improved CFD model of gas flow and particle interception in a fiber material[J]. Chinese Journal of Chemical Engineering, 2017(3):264-273.
[8] 顾丛汇, 吕士武, 李瑞, 等. 纤维对PM2.5过滤性能的影响[J]. 化工学报, 2014,65(6):2137-2147. GU C H, LÜ S W, LI R, et al. Influence of fiber on filtration performance for PM2.5[J]. CIESC Journal, 2014,65(6):2137-2147.
[9] TEHRANI S M B, MOOSAVI A, SADRHOSSEINI H. Filtration of aerosol particles by cylindrical fibers within a parallel and staggered array[J]. Microsystem Technologies, 2016, 22(5):965-977.
[10] RABIEE M B, TALEBI S, ABOUALI O, et al. Investigation of the characteristics of particulate flows through fibrous filters using the lattice Boltzmann method[J]. Particuology, 2015, 21:90-98.
[11] LI W, SHEN S, LI H. Study and optimization of the filtration performance of multi-fiber filter[J]. Advanced Powder Technology, 2016, 27(2):638-645.
[12] EMAMI B, FOTOVATI S, AMREI M M, et al. On the effects of fiber orientation in permeability of fibrous media to power-law fluids[J]. International Journal of Heat and Mass Transfer, 2013, 60:375-379.
[13] FOTOVATI S, TAFRESHI H V, POURDEYHIMI B. Influence of fiber orientation distribution on performance of aerosol filtration media[J]. Chemical Engineering Science, 2010,65(18):5285-5293.
[14] LEE S J, HEO M, LEE D, et al. Fabrication and design of bioactive agent coated, highly-aligned electrospun matrices for nerve tissue engineering:preparation, characterization and application[J]. Applied Surface Science, 2017, 424(3):359-367.
[15] MA S, LIU J, QU M, et al. Effects of carbonization tension on the structural and tensile properties of continuous bundles of highly aligned electrospun carbon nanofibers[J]. Materials Letters, 2016,183:369-373.
[16] NGUYEN D, HWANG Y, MOON W. Electrospinning of well-aligned fiber bundles using an end-point control assembly method[J]. European Polymer Journal, 2016, 77:54-64.
[17] ZHONG J, ZHANG H, YAN J, et al. Effect of nanofiber orientation of electrospun nanofibrous scaffolds on cell growth and elastin expression of muscle cells[J]. Colloids and Surfaces B:Biointerfaces, 2015,136:772-778.
[18] BORGES A L S, MÜNCHOW E A, SOUZA A C O, et al. Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015,48:134-144.
[19] WU S, QIN X. Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method[J]. Materials Letters, 2013,106:204-207.
[20] ZHAO J, LIU H, XU L. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method[J]. Materials & Design, 2016,90:1-6.
[21] DABIRIAN F, SARKESHIK S, KIANIHA A. Production of uniaxially aligned nanofibers using a modified electrospinning method:rotating jet[J]. Current Nanoscience, 2009,5(3):318-323.
[22] LI D, WANG Y L, XIA Y N. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Advanced Materials, 2004,16(4):361-366.
[23] LI D, WANG Y, XIA Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters, 2003, 3(8):1167-1171.
[24] LI B, PAN S, YUAN H, et al. Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites[J]. Composites Part A:Applied Science and Manufacturing, 2016, 90:380-389.
[25] BEACHLEY V, KATSANEVAKIS E, ZHANG N, et al. Highly aligned polymer nanofiber structures:fabrication and applications in tissue engineering[M]//JAYAKUMAR R, NAIR S V. Advances in polymer science. Berlin:Springer-Verlag Berlin, 2012:171-212.
[26] 黄华云, 李想, 曾泳春. 电场分布对静电纺PEO纤维取向度的影响[J]. 东华大学学报(自然科学版), 2016(5):628-635. HUANG H Y, LI X, ZENG Y C. Effect of electric field distribution on molecular orientation in electrospun peo nanofibers[J]. Journal of Donghua University (Nature Science), 2016(5):628-635.
[27] EDWARDS M D, MITCHELL G R, MOHAN S D, et al. Development of orientation during electrospinning of fibres of poly(ε-caprolactone)[J]. European Polymer Journal, 2010, 46(6):1175-1183.
[28] YU B ZHAO X M, ZENG Y N, et al. The influence of process parameters on needle punched nonwovens investigated using image analysis[J]. RSC Advances, 2017,7(9):5183-5188.
[29] ZHANG Q, WANG L, WEI Z, et al. Large-scale aligned fiber mats prepared by salt-induced pulse electrospinning[J]. Journal of Polymer Science Part B, Polymer Physics, 2012,50(14):1004-1012.
[30] KAUR S, RANA D, MATSUURA T, et al. Preparation and characterization of surface modified electrospun membranes for higher filtration flux[J]. Journal of Membrane Science, 2012, 390/391:235-242.
[31] HEIDARI I, MASHHADI M M, FARAJI G. A novel approach for preparation of aligned electrospun polyacrylonitrile nanofibers[J]. Chemical Physics Letters, 2013, 590:231-234.
[32] YOUSFANI S H S, GONG R H, PORAT I. Manufacture of fibreglass nonwoven composites and study of the effect of different variables on their quality[J]. Polymers & Polymer Composites, 2015, 23(5):351.
[33] FARUKH F, DEMIRCI E, SABUNCUOGLU B, et al. Mechanical behaviour of nonwovens:analysis of effect of manufacturing parameters with parametric computational model[J]. Computational Materials Science, 2014, 94:8-16.
[34] FARUKH F, DEMIRCI E, SABUNCUOGLU B, et al. Mechanical analysis of bi-component-fibre nonwovens:finite-element strategy[J]. Composites Part B:Engineering, 2015, 68:327-335.
[35] FARUKH F, DEMIRCI E, SABUNCUOGLU B, et al. Characterisation and numerical modelling of complex deformation behaviour in thermally bonded nonwovens[J]. Computational Materials Science, 2013, 71:165-171.
[36] DEMIRCI E. Mechanical behaviour of thermally bonded bicomponent fibre nonwovens:experimental analysis and numerical modelling[D]. Leicester, England:Loughborough University, 2011.
[37] ZHANG H, QIAN X M, QI Z, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro entangle method[J]. Journal of Industrial Textiles, 2015, 45(1):48-65. |