Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2439-2453.DOI: 10.16085/j.issn.1000-6613.2022-1195
• Materials science and technology • Previous Articles Next Articles
CHEN Mingxing1,2(), WANG Xinya1,2, ZHANG Wei1,2(), XIAO Changfa3
Received:
2022-06-27
Revised:
2022-08-20
Online:
2023-06-02
Published:
2023-05-10
Contact:
ZHANG Wei
陈明星1,2(), 王新亚1,2, 张威1,2(), 肖长发3
通讯作者:
张威
作者简介:
陈明星(1986—),男,博士,研究方向为新型功能性纤维材料的制备及应用。E-mail:mxchen1990@163.com。
基金资助:
CLC Number:
CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453.
陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1195
纤维种类 | 分子结构式 | 热性能 | 其他特性 |
---|---|---|---|
间位芳纶(PMIA) | Td为400~430℃、可在200℃下长时间使用 | 阻燃、耐化学腐蚀(耐酸、不耐强碱)、耐辐射但不耐紫外光、尺寸稳定、可纺性好 | |
对位芳纶(PPTA) | Td约为560℃、可在-196~204℃下长时间使用 | 高抗拉强度和起始弹性模量、热收缩和蠕变性能稳定,高绝缘性和耐化学腐蚀性(除浓硫酸外,耐强酸强碱)、耐紫外性能差 | |
聚酰亚胺(PI) | Tg>280℃、杂环PI的Tg可超450℃、Td约为560℃,在300℃下可长期使用 | 高绝缘、耐低温、高强高模、耐酸碱性差、不耐水解、耐辐射、介电性能好、生物相容性好 | |
聚四氟乙烯(PTFE) | Td约为425℃,可在260℃下长期使用 | 表面光滑、摩擦系数小、耐化学腐蚀、耐强酸强碱、强度高、耐紫外光、阻燃 | |
聚苯硫醚(PPS) | Td大于400℃、可在180~200℃下长时间使用 | 耐化学腐蚀、蠕变量低、吸水率低、尺寸稳定性好、阻燃、耐碱、对强氧化性酸耐受性差、可纺性差、难溶解、耐紫外光性差 | |
聚芳硫醚砜(PASS) | Tg为215~226℃,热变形温度为190℃ | 尺寸稳定、耐化学腐蚀、阻燃和优良的电性能、可溶于特定溶剂、对浓硫酸耐受性差 | |
聚苯并咪唑(PBI) | Td大于500℃、可在300~370℃下长时间使用 | 阻燃、耐化学腐蚀、耐酸碱、高电绝缘,热收缩性能稳定、耐辐射 | |
聚醚醚酮(PEEK) | Tg约为143℃、Td大于520℃、可在260℃下长期使用 | 摩擦系数小、耐水解、耐疲劳、耐辐照、高电绝缘、尺寸稳定、热膨胀系数小、耐强酸强碱(浓硫酸除外) |
纤维种类 | 分子结构式 | 热性能 | 其他特性 |
---|---|---|---|
间位芳纶(PMIA) | Td为400~430℃、可在200℃下长时间使用 | 阻燃、耐化学腐蚀(耐酸、不耐强碱)、耐辐射但不耐紫外光、尺寸稳定、可纺性好 | |
对位芳纶(PPTA) | Td约为560℃、可在-196~204℃下长时间使用 | 高抗拉强度和起始弹性模量、热收缩和蠕变性能稳定,高绝缘性和耐化学腐蚀性(除浓硫酸外,耐强酸强碱)、耐紫外性能差 | |
聚酰亚胺(PI) | Tg>280℃、杂环PI的Tg可超450℃、Td约为560℃,在300℃下可长期使用 | 高绝缘、耐低温、高强高模、耐酸碱性差、不耐水解、耐辐射、介电性能好、生物相容性好 | |
聚四氟乙烯(PTFE) | Td约为425℃,可在260℃下长期使用 | 表面光滑、摩擦系数小、耐化学腐蚀、耐强酸强碱、强度高、耐紫外光、阻燃 | |
聚苯硫醚(PPS) | Td大于400℃、可在180~200℃下长时间使用 | 耐化学腐蚀、蠕变量低、吸水率低、尺寸稳定性好、阻燃、耐碱、对强氧化性酸耐受性差、可纺性差、难溶解、耐紫外光性差 | |
聚芳硫醚砜(PASS) | Tg为215~226℃,热变形温度为190℃ | 尺寸稳定、耐化学腐蚀、阻燃和优良的电性能、可溶于特定溶剂、对浓硫酸耐受性差 | |
聚苯并咪唑(PBI) | Td大于500℃、可在300~370℃下长时间使用 | 阻燃、耐化学腐蚀、耐酸碱、高电绝缘,热收缩性能稳定、耐辐射 | |
聚醚醚酮(PEEK) | Tg约为143℃、Td大于520℃、可在260℃下长期使用 | 摩擦系数小、耐水解、耐疲劳、耐辐照、高电绝缘、尺寸稳定、热膨胀系数小、耐强酸强碱(浓硫酸除外) |
制备方法 | 工艺特点 | 滤材特点 |
---|---|---|
针刺 | 适用原料广泛、有机无机纤维皆可、可加工滤材面密度范围广,对纤维损伤大 | 孔径大、孔隙率低、强度好 |
水刺 | 适用原料广泛、有机无机纤维皆可、对纤维损伤小,适于加工低面密度滤材 | 孔径较小、孔隙率降低、透气性能较好,纤维间结合相对差、强度稍差 |
熔喷 | 工艺流程短、生产效率高,适用原料少、耗能高 | 孔径较小、孔隙率较高,强度相对较低 |
静电纺丝 | 适用原料广泛、纤维直径细且均匀可控、可制备不同结构的纳米纤维、接收装置多样化、易于功能化、已工业化,需要高压电源、生产效率低 | 形貌均匀、孔径小、孔隙率高、孔结构均匀,强度差 |
离心纺丝 | 适用原料广泛、无需高压电源、生产效率高,纤维直径相比静电纺大、难以制备异形结构纳米纤维 | 孔径小、孔隙率高,形态单一、强度差 |
气流纺丝 | 适用原料广泛、无需高压电源、生产效率高、可与静电纺丝结合,纤维形态可控性较差 | 孔径小、孔隙率高,孔结构均一性差、强度差 |
制备方法 | 工艺特点 | 滤材特点 |
---|---|---|
针刺 | 适用原料广泛、有机无机纤维皆可、可加工滤材面密度范围广,对纤维损伤大 | 孔径大、孔隙率低、强度好 |
水刺 | 适用原料广泛、有机无机纤维皆可、对纤维损伤小,适于加工低面密度滤材 | 孔径较小、孔隙率降低、透气性能较好,纤维间结合相对差、强度稍差 |
熔喷 | 工艺流程短、生产效率高,适用原料少、耗能高 | 孔径较小、孔隙率较高,强度相对较低 |
静电纺丝 | 适用原料广泛、纤维直径细且均匀可控、可制备不同结构的纳米纤维、接收装置多样化、易于功能化、已工业化,需要高压电源、生产效率低 | 形貌均匀、孔径小、孔隙率高、孔结构均匀,强度差 |
离心纺丝 | 适用原料广泛、无需高压电源、生产效率高,纤维直径相比静电纺大、难以制备异形结构纳米纤维 | 孔径小、孔隙率高,形态单一、强度差 |
气流纺丝 | 适用原料广泛、无需高压电源、生产效率高、可与静电纺丝结合,纤维形态可控性较差 | 孔径小、孔隙率高,孔结构均一性差、强度差 |
基材 | 功能性物质 | 功能性 | 特性 | 参考文献 |
---|---|---|---|---|
PPS针刺纤维毡 | MnO2 | 脱硝 | 对4μm以上颗粒物过滤效率接近100%;当NH3/NO的流速为140mL/min时,在200℃下,对NO的转化率接近85% | [ |
SiO2纳米纤维膜 | Co3O4-C | 在1.1cm/s的流速下,对PM2.5的过滤效率达99.99%,过滤阻力仅58Pa;当NH3/NO的流速为200mL/min时,在245℃下,对1224.5mg/m3 NO的转化率为91.7% | [ | |
PAN纳米纤维膜 | MIL-53 | 脱硫 | 在3.98cm/s的流速下,对PM0.3的过滤效率达99%,过滤阻力仅30.5Pa;当气体流速为700mL/min时,纳米纤维膜对浓度为19.1mg/m3 SiO2气体的吸附量为2.8mg/g | [ |
PTFE滤膜 | UiO-66-NH2、CNT | 在3.3cm/s的流速下,对PM0.3的过滤效率达99.997%,过滤阻力约为160Pa;当气体流速为0.12cm/s,SiO2浓度为78.4mg/m3时,纳米纤维膜对SiO2的吸附量为38.4mg/g | [ | |
PTFE滤膜 | Ag/ZnO | 脱VOCs | 当气体流速为0.5cm/s,甲醛体积分数为0.2%时,纳米纤维膜对甲醛的去除率约为60%;在动态抗菌实验中,抑菌率达99.5% | [ |
PAN纳米纤维膜 | TiO2 | 在5.3cm/s的流速下,对质量中位直径为0.26μm颗粒物过滤效率为89%,过滤阻力为85Pa;对初始浓度为325mg/m3±50mg/m3甲苯的转化率为78.6% | [ | |
SiO2/PTFE纳米纤维膜 | ZnO | 抗菌 | 在1.7cm/s的流速下,对平均直径为0.3μm颗粒物的过滤效率达99.99%,过滤阻力约为1530Pa;对大肠杆菌的抑菌率可达99.67%,对枯草芽孢杆菌抑菌率可达99.93% | [ |
PPS纤维滤材 | Mn-Ce-Fe-Co-O x | 脱汞 | 当气体流速为1.7cm/s,Hg0初始浓度为45μg/m3±0.1μg/m3时,对Hg0的转化率高于93.2% | [ |
Al2O3纳米纤维膜 | Pt | 脱CO | 在5cm/s的流速下,对质量中位直径为0.3μm颗粒物过滤效率为99.986%,过滤阻力约为339.4Pa;在242℃和60mL/min流速下,对混合气体中体积分数1% CO的催化转化效率接近100% | [ |
基材 | 功能性物质 | 功能性 | 特性 | 参考文献 |
---|---|---|---|---|
PPS针刺纤维毡 | MnO2 | 脱硝 | 对4μm以上颗粒物过滤效率接近100%;当NH3/NO的流速为140mL/min时,在200℃下,对NO的转化率接近85% | [ |
SiO2纳米纤维膜 | Co3O4-C | 在1.1cm/s的流速下,对PM2.5的过滤效率达99.99%,过滤阻力仅58Pa;当NH3/NO的流速为200mL/min时,在245℃下,对1224.5mg/m3 NO的转化率为91.7% | [ | |
PAN纳米纤维膜 | MIL-53 | 脱硫 | 在3.98cm/s的流速下,对PM0.3的过滤效率达99%,过滤阻力仅30.5Pa;当气体流速为700mL/min时,纳米纤维膜对浓度为19.1mg/m3 SiO2气体的吸附量为2.8mg/g | [ |
PTFE滤膜 | UiO-66-NH2、CNT | 在3.3cm/s的流速下,对PM0.3的过滤效率达99.997%,过滤阻力约为160Pa;当气体流速为0.12cm/s,SiO2浓度为78.4mg/m3时,纳米纤维膜对SiO2的吸附量为38.4mg/g | [ | |
PTFE滤膜 | Ag/ZnO | 脱VOCs | 当气体流速为0.5cm/s,甲醛体积分数为0.2%时,纳米纤维膜对甲醛的去除率约为60%;在动态抗菌实验中,抑菌率达99.5% | [ |
PAN纳米纤维膜 | TiO2 | 在5.3cm/s的流速下,对质量中位直径为0.26μm颗粒物过滤效率为89%,过滤阻力为85Pa;对初始浓度为325mg/m3±50mg/m3甲苯的转化率为78.6% | [ | |
SiO2/PTFE纳米纤维膜 | ZnO | 抗菌 | 在1.7cm/s的流速下,对平均直径为0.3μm颗粒物的过滤效率达99.99%,过滤阻力约为1530Pa;对大肠杆菌的抑菌率可达99.67%,对枯草芽孢杆菌抑菌率可达99.93% | [ |
PPS纤维滤材 | Mn-Ce-Fe-Co-O x | 脱汞 | 当气体流速为1.7cm/s,Hg0初始浓度为45μg/m3±0.1μg/m3时,对Hg0的转化率高于93.2% | [ |
Al2O3纳米纤维膜 | Pt | 脱CO | 在5cm/s的流速下,对质量中位直径为0.3μm颗粒物过滤效率为99.986%,过滤阻力约为339.4Pa;在242℃和60mL/min流速下,对混合气体中体积分数1% CO的催化转化效率接近100% | [ |
1 | LAKSHMANAN A, SARNGAN P P, SARKAR D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania[J]. Chemosphere, 2022, 286(Pt 2): 131671. |
2 | ZHOU Mengjuan, HU Min, QUAN Zhenzhen, et al. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM0.26 pollutants[J]. Journal of Colloid and Interface Science, 2020, 578: 195-206. |
3 | State of Global Air 2020[EB/OL]. . |
4 | 徐泽丰, 崔荣, 金江. 超高温烟尘过滤陶瓷滤料的制备[J]. 环境工程学报, 2016, 10(4): 1951-1955. |
XU Zefeng, CUI Rong, JIN Jiang. Preparation of ceramic filter for gas filtration at ultra-high temperatures[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1951-1955. | |
5 | 王亚芳. 静电纺丝法构筑聚酰亚胺基高温空气过滤材料及其性能研究[D]. 西安: 陕西科技大学, 2021. |
WANG Yafang. Study on the construction and property of polyimide-based filters for high temperature air pollution control via electrospinning[D]. Xi’an: Shaanxi University of Science & Technology, 2021. | |
6 | WANG Chiu-sen, OTANI Y. Removal of nanoparticles from gas streams by fibrous filters: A review[J]. Industrial & Engineering Chemistry Research, 2013, 52(1): 5-17. |
7 | 付群飞, 房杰, 时杰, 等. 纤维种类对纤维束过滤器除尘性能的影响[J]. 环境工程学报, 2019, 13(3): 701-707. |
FU Qunfei, FANG Jie, SHI Jie, et al. Effect of fiber type on dust removal performance of fiber bundle filters[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 701-707. | |
8 | KADAM V V, WANG Lijing, PADHYE R. Electrospun nanofibre materials to filter air pollutants—A review[J]. Journal of Industrial Textiles, 2018, 47(8): 2253-2280. |
9 | ROBERT B, NALLATHAMBI G. A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air[J]. Colloid and Interface Science Communications, 2020, 37: 100275. |
10 | 赖星, 王纯, 肖长发, 等. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179. |
LAI Xing, WANG Chun, XIAO Changfa, et al. Progress in preparation and application of aromatic polyamide separation membrane[J]. Journal of Textile Research, 2021, 42(10): 172-179. | |
11 | 魏恋璎, 陈明星, 张威, 等. 芳香聚酰胺材料在膜分离领域应用研究进展[J]. 膜科学与技术, 2022, 42(1): 155-169. |
WEI Lianying, CHEN Mingxing, ZHANG Wei, et al. The progress of aromatic polyamide materials in the application of membrane separation[J]. Membrane Science and Technology, 2022, 42(1): 155-169. | |
12 | ZHANG Hongnan, XIE Yongxin, SONG Yan, et al. Preparation of high-temperature resistant poly(m-phenylene isophthalamide)/polyacrylonitrile composite nanofibers membrane for air filtration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126831. |
13 | TENG Cuiqing, LI Hui, LIU Jing, et al. Effect of high molecular weight PPTA on liquid crystalline phase and spinning process of aramid fibers[J]. Polymers, 2020, 12(5): 1206. |
14 | XU Kangli, ZHAN Lei, YAN Rui, et al. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven[J]. Nanoscale, 2022, 14(2): 419-427. |
15 | LI Yajian, MING Jinfa, YUAN Ding, et al. High-temperature bearable polysulfonamide/polyurethane composite nanofibers’ membranes for filtration application[J]. Macromolecular Materials and Engineering, 2021, 306(7): 2100081. |
16 | DING Yichun, HOU Haoqing, ZHAO Yong, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science, 2016, 61: 67-103. |
17 | WANG Liang, CUI Lingyan, LIU Yongsheng, et al. Electrospun polyimide nanofiber-coated polyimide nonwoven fabric for hot gas filtration[J]. Adsorption Science & Technology, 2018, 36(9/10): 1734-1743. |
18 | BAO Feng, DAI Xuemin, DONG Zhixin, et al. Fabrication and properties of polyimide copolymer fibers containing pyrimidine and amide units[J]. Journal of Materials Science, 2020, 55(25): 11763-11778. |
19 | 张泽, 徐卫军, 康宏亮, 等. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019, 40, (12): 152-161. |
ZHANG Ze, XU Weijun, KANG Hongliang, et al. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers[J]. Journal of Textile Research, 2019, 40(12): 152-161. | |
20 | QIAO Shiya, KANG Shuai, ZHU Jing, et al. A synergistic self-assembly strategy to fabricate thermally stable OPAN/PI composite aerogels for particulate matter removal[J]. Materials Chemistry Frontiers, 2021, 5(24): 8308-8318. |
21 | FENG Shasha, ZHONG Zhaoxiang, WANG Yong, et al. Progress and perspectives in PTFE membrane: preparation, modification, and applications[J]. Journal of Membrane Science, 2018, 549: 332-349. |
22 | WANG Huaiyuan, YAN Lei, GAO Dong, et al. Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1/2): 62-68. |
23 | 杨超鹏, 刘杰, 史宏达, 等. 不同中空纤维膜材料对烟气中二氧化硫的吸收性能影响[J]. 化工进展, 2020, 39(8): 3205-3212. |
YANG Chaopeng, LIU Jie, SHI Hongda, et al. Absorption properties of hollow fiber membranes of different materials for flue gas desulfurization[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3205-3212. | |
24 | 付浩, 肖长发. 含氟聚合物纤维研究进展[J]. 高分子通报, 2018(12): 22-31. |
FU Hao, XIAO Changfa. Research development of fluoropolymer fibers[J]. Polymer Bulletin, 2018(12): 22-31. | |
25 | XU Huan, JIN Wangyong, WANG Feng, et al. Formation and characterization of polytetrafluoroethylene nanofiber membranes for high-efficiency fine particulate filtration[J]. RSC Advances, 2019, 9(24): 13631-13645. |
26 | RAHATE A S, NEMADE K R, WAGHULEY S A. Polyphenylene sulfide (PPS): State of the art and applications[J]. Reviews in Chemical Engineering, 2013, 29(6): 471-489. |
27 | YU Yan, XIONG Siwei, HUANG Hao, et al. Fabrication and application of poly(phenylene sulfide) ultrafine fiber[J]. Reactive and Functional Polymers, 2020, 150: 104539. |
28 | BAI Mingqi, WANG Jian, ZHOU Rong, et al. Polyphenylene sulfide fabric with enhanced oxidation resistance and hydrophobicity through polybenzoxazine surface coating for emission control in harsh environment[J]. Journal of Hazardous Materials, 2022, 432: 128735. |
29 | WEI Zhimei, SU Qing, YANG Jie, et al. High-performance filter membrane composed of oxidized poly(arylene sulfide sulfone) nanofibers for the high-efficiency air filtration[J]. Journal of Hazardous Materials, 2021, 417: 126033. |
30 | WEI Zhimei, SU Qing, WANG Xiaojun, et al. Nanofiber air filters with high-temperature stability and superior chemical resistance for the high-efficiency PM2.5 removal[J]. Industrial & Engineering Chemistry Research, 2021, 60(27): 9971-9982. |
31 | SU Qing, WEI Zhimei, WANG Xiaojun, et al. Electrospun composite membrane based on polyarylene sulfide sulfone/Ag/ZnO nanofibers for antibacterial effective PM2.5 filtration[J]. Journal of Applied Polymer Science, 2022, 139(8): 51693. |
32 | ZHAO Baiwang, SHI Gui Min, LAI Juin-Yih, et al. Braid-reinforced polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN)[J]. Separation and Purification Technology, 2022, 290: 120811. |
33 | ETXEBERRIA-BENAVIDES M, JOHNSON T, CAO Shuai, et al. PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure[J]. Separation and Purification Technology, 2020, 237: 116347. |
34 | XU Qinfei, WANG Guibin, XIANG Chunhui, et al. Preparation of a novel poly(ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal[J]. Separation and Purification Technology, 2020, 253: 117555. |
35 | 钱幺, 赵宝宝, 钱晓明. 超细无碱玻璃纤维复合滤料的过滤性能[J]. 环境工程学报, 2017, 11(6): 3659-3665. |
QIAN Yao, ZHAO Baobao, QIAN Xiaoming. Filtration performance of ultrafine E-glass fiber composite filter[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3659-3665. | |
36 | 何艳芬, 陈雪善. 玄武岩基/玄武岩+轶纶复合针刺滤材的开发研究[J]. 现代纺织技术, 2017, 25(1): 18-22. |
HE Yanfen, CHEN Xueshan. Study on the development of basalt fiber fabric/basalt fiber & yilun fiber composite needling filter material[J]. Advanced Textile Technology, 2017, 25(1): 18-22. | |
37 | 杨炳文, 刁永发, 杨学宾, 等. 耐高温磁性玄武岩滤料的制备及捕集微细颗粒物研究[J]. 功能材料, 2021, 52(8): 8144-8150. |
YANG Bingwen, DIAO Yongfa, YANG Xuebin, et al. Preparation and study on trapping fine particles of high temperature resistant magnetic filter material[J]. Journal of Functional Materials, 2021, 52(8): 8144-8150. | |
38 | 陈代荣, 韩伟健, 李思维, 等. 连续陶瓷纤维的制备、结构、性能和应用:研究现状及发展方向[J]. 现代技术陶瓷, 22018, 39(3): 151-222. |
CHEN Dairong, HAN Weijian, LI Siwei, et al. Fabrication, microstructure, properties and applications of continunous ceramic fibers: A review of present status and further directions[J]. Advanced Ceramics, 2018, 39(3): 151-222. | |
39 | LI Mingzhu, SU Lei, WANG Hongjie, et al. Stretchable and compressible Si3N4 nanofiber sponge with aligned microstructure for highly efficient particulate matter filtration under high-velocity airflow[J]. Small, 2021, 17(26): 2100556. |
40 | TANG Xingchang, WANG Xiangfei, YANG Lijun, et al. Multifunctional nickel nanofiber for effective air purification: PM removal and NO reduction from automobile exhaust[J]. Journal of Materials Science, 2020, 55(14): 6161-6171. |
41 | LI Dawei, SHEN Ying, WANG Lanlan, et al. Hierarchical structured polyimide-silica hybrid nano/microfiber filters welded by solvent vapor for air filtration[J]. Polymers, 2020, 12(11): 2494. |
42 | DING Zezhao, BABAR A A, WANG Chao, et al. Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design[J]. Composites Communications, 2021, 25: 100481. |
43 | YU Bin, ZHAO Xiaoming. Fabrication and characterization of pre-oxidized PAN composite filters[J]. The Journal of the Textile Institute, 2018, 109(10): 1360-1366. |
44 | WANG Yuxiao, XU Yukang, WANG Dan, et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48437-48449. |
45 | YUAN Xiangnan, CHENG Sha, GAO Jing. PTFE emulsion treatment of polyimide/superfine glass fiber needle-punched complex filters[J]. The Journal of The Textile Institute, 2021: 1-7. |
46 | 张楠, 崔鑫, 靳向煜, 等. 加固工艺及组分对PPS/PTFE复合耐高温滤料性能的影响[J]. 东华大学学报(自然科学版), 2014, 40(2): 202-204, 233. |
ZHANG Nan, CUI Xin, JIN Xiangyu, et al. Effect of different forming process and component to PPS/PTFE composite high temperature resistance filter[J]. Journal of Donghua University (Natural Science), 2014, 40(2): 202-204, 233. | |
47 | MADUNA L, PATNAIK A, MVUBU M, et al. Optimization of air permeability of spunlaced filter fabrics using the Box-Behnken experimental design[J]. Journal of Industrial Textiles, 2020, 50(5): 675-691. |
48 | DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: A review[J]. Physics of Fluids, 2019, 31(9): 091301. |
49 | 胡宝继, 刘凡, 邵伟力, 等. 聚苯硫醚熔喷可纺性的研究[J]. 上海纺织科技, 2019, 47(8): 29-31. |
HU Baoji, LIU Fan, SHAO Weili, et al. Research on melt-blown spinnability of PPS[J]. Shanghai Textile Science & Technology, 2019, 47(8): 29-31. | |
50 | CHEN Qiqi, LIU Yujian, DENG Hangjun, et al. Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration[J]. Polymer Engineering & Science, 2020, 60(11): 2887-2894. |
51 | 陈金妹, 李爱君, 谈萍, 等. 金属纤维毡过滤效率研究[J]. 粉末冶金工业, 2021, 31(2): 109-112. |
CHEN Jinmei, LI Aijun, TAN Ping, et al. Study of filtration efficiency in metal fiber felts[J]. Powder Metallurgy Industry, 2021, 31(2): 109-112. | |
52 | 姬忠礼, 栾鑫, 苗林丰. 高温气体过滤技术及装备发展概况[J]. 化工进展, 2020, 39(6): 2304-2311. |
JI Zhongli, LUAN Xin, MIAO Linfeng. Overview of hot-gas filtration technology and equipment development[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2304-2311. | |
53 | LU Tao, CUI Jiaxin, QU Qingli, et al. Multistructured electrospun nanofibers for air filtration: A review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23293-23313. |
54 | LIU Hui, LIU Lifang, YU Jianyong, et al. High-efficiency and super-breathable air filters based on biomimetic ultrathin nanofiber networks[J]. Composites Communications, 2020, 22: 100493. |
55 | 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(4): 1305-1313. |
HU Min, ZHONG Zhaoxiang, XING Weihong. Development of nanofiber membrane for air purification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1305-1313. | |
56 | 王慧, 刘新懿, 王伟, 等. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356. |
WANG Hui, LIU Xinyi, WANG Wei, et al. Research and application of electrospun nanofibers with special morphology: A review[J]. Chemical Industry and Engineering Progress, , 2022, 41(8): 4341-4356. | |
57 | Dan LYU, TANG Guosheng, CHEN Long, et al. Multifunctional gas-spinning hierarchical architecture: A robust and efficient nanofiber membrane for simultaneous air and water contaminant remediation[J]. ACS Applied Polymer Materials, 2020, 2(12): 5686-5697. |
58 | ZHOU Yangjian, LIU Yanan, ZHANG Mingxin, et al. Electrospun nanofiber membranes for air filtration: A review[J]. Nanomaterials, 2022, 12(7): 1077. |
59 | CHEN Bowen, WANG Jingxiao, JIANG Youlin, et al. Stable zirconium carbide fibers fabricated by centrifugal spinning technique[J]. Journal of Inorganic Materials, 2020, 35(12): 1385. |
60 | LI Zhen, YU Zhiqun, WU Yundi, et al. Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater[J]. Chemical Engineering Journal, 2020, 390: 124648. |
61 | 郝天煦, 张林, 王新亚, 等. 静电纺微结构纳米纤维空气过滤膜研究进展[J]. 棉纺织技术, 2022, 50(2): 78-84. |
HAO Tianxu, ZHANG Lin, WANG Xinya, et al. Research progress of electrospinning microstructure nanofiber air filtration film[J]. Cotton Textile Technology, 2022, 50(2): 78-84. | |
62 | YANG Xue, PU Yi, ZHANG Yifei, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020, 391: 122254. |
63 | YU Jia, TIAN Xu, XIN Binjie, et al. Preparation and characterization of PMIA nanofiber filter membrane for air filter[J]. Fibers and Polymers, 2021, 22(9): 2413-2423. |
64 | LI Yajian, YUAN Ding, GENG Qian, et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0.3 purification and oil/water separation[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39831-39843. |
65 | YANG Xue, PU Yi, LI Shuxia, et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43188-43199. |
66 | ATICI B, ÜNLÜ C H, YANILMAZ M. A review on centrifugally spun fibers and their applications[J]. Polymer Reviews, 2022, 62(1): 1-64. |
67 | YANILMAZ M, ASIRI A M., ZHANG Xiangwu. Centrifugally spun porous carbon microfibers as interlayer for Li-S batteries[J]. Journal of Materials Science, 2020, 55(8): 3538-3548. |
68 | HUANG Ya, SONG Jianan, YANG Cheng, et al. Scalable manufacturing and applications of nanofibers[J]. Materials Today, 2019, 28: 98-113. |
69 | TEPEKIRAN B N, CALISIR M D, POLAT Y, et al. Centrifugally spun silica (SiO2) nanofibers for high-temperature air filtration[J]. Aerosol Science and Technology, 2019, 53(8): 921-932. |
70 | WANG Antuo, LI Xianglong, HOU Teng, et al. High efficiency, low resistance and high temperature resistance PTFE porous fibrous membrane for air filtration[J]. Materials Letters, 2021, 295: 129831. |
71 | GAO Yuan, ZHANG Jun, SU Ying, et al. Recent progress and challenges in solution blow spinning[J]. Materials Horizons, 2021, 8(2): 426-446. |
72 | WANG H, LIN S, YANG S, et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge[J]. Small, 2018, 14(19): 1800258. |
73 | JIA Chao, LIU Yibo, LI Lei, et al. A foldable all-ceramic air filter paper with high efficiency and high-temperature resistance[J]. Nano Letters, 2020, 20(7): 4993-5000. |
74 | LI Ziwei, SONG Jianan, LONG Yuanzheng, et al. Large-scale blow spinning of heat-resistant nanofibrous air filters[J]. Nano Research, 2020, 13(3): 861-867. |
75 | 刘朝军, 刘俊杰, 丁伊可, 等. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374. |
LIU Chaojun, LIU Junjie, DING Yike, et al. Structure and properties of PTFE membrane for high efficiency air filtration[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4367-4374. | |
76 | XU Huan, JIN Wangyong, LUO Jie, et al. Study of the PTFE multi-tube high efficiency air filter for indoor air purification[J]. Process Safety and Environmental Protection, 2021, 151: 28-38. |
77 | YU Na, ZHU Xiangming, FENG Shasha, et al. A breathable PTFE membrane for enhanced moxibustion process and occupational health protection[J]. Journal of Membrane Science, 2022, 655: 120579. |
78 | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
79 | FENG Shasha, ZHOU Mengdi, HAN Feng, et al. A bifunctional MnO x @PTFE catalytic membrane for efficient low temperature NO x -SCR and dust removal[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1260-1267. |
80 | 单良, 尹荣强, 王慧, 等. VMoTi/玻璃纤维复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899. |
SHAN Liang, YIN Rongqiang, WANG Hui, et al. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NO x synergistic removal performance[J]. CIESC Journal, 2021, 72(9): 4892-4899. | |
81 | CHEN Ying, HE Hongwei, WU Shaohua, et al. Mn/Ce oxides decorated polyphenylene sulfide needle-punching fibrous felts for dust removal and denitration application[J]. Polymers, 2020, 12(1): 168. |
82 | LI Qun, WU Jiabin, HUANG Liang, et al. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes[J]. Journal of Materials Chemistry A, 2018, 6(25): 12115-12124. |
83 | YIN Linghui, HU Min, LI Dongyan, et al. Multifunctional ZIF-67@SiO2 membrane for high efficiency removal of particulate matter and toxic gases[J]. Industrial & Engineering Chemistry Research, 2016, 138(18): 5785-5788. |
84 | ZHANG Yuanyuan, YUAN Shuai, FENG Xiao, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. |
85 | XIE Fan, WANG Yafang, ZHUO Longhai, et al. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control[J]. Journal of Hazardous Materials, 2021, 412: 125260. |
86 | ZHU Qiuyun, TANG Xi, FENG Shasha, et al. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control[J]. Journal of Membrane Science, 2019, 581: 252-261. |
87 | JU Linxin, LI Fan, ZHOU Rong, et al. Manganese oxides decorated polyphenylene sulfide needle-punching fibrous felts: A new composite for dust removal and denitration application[J]. Fibers and Polymers, 2021, 22: 2483-2490. |
88 | ZHOU Huixian, ZHONG Hui, ZENG Yiqing, et al. A strategy for constructing highly efficient Co3O4-C@SiO2 nanofibers catalytic membrane for NH3-SCR of NO and dust filtration[J]. Separation and Purification Technology, 2022, 292: 120997. |
89 | WANG Xiaoyu, XU Wenshi, GU Jin′ge, et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively[J]. Nanoscale, 2019, 11(38): 17782-17790. |
90 | FENG Shasha, LI Xingya, ZHAO Shuaifei, et al. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption[J]. Environmental Science: Nano, 2018, 5(12): 3023-3031. |
91 | FENG Shasha, LI Dongyan, Zexian LOW, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93. |
92 | SU Jiafei, YANG Guohong, CHENG Cuilian, et al. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation[J]. Journal of Colloid and Interface Science, 2017, 507: 386-396. |
93 | ZHU Xiao, FENG Shasha, RAO Yuanyuan, et al. A novel semi-dry method for rapidly synthesis ZnO nanorods on SiO2@PTFE nanofiber membrane for efficient air cleaning[J]. Journal of Membrane Science, 2022, 645: 120206. |
94 | LI Tao, LIU Meng, DUAN Yufeng, et al. Performance and reaction mechanism for low-temperature NO x catalytic synergistic Hg0 oxidation of catalytic polyphenylene sulfide filter materials[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(1): 2403. |
95 | WANG Yan, ZHAN Sihui, DI Song, et al. Novel flexible self-standing Pt/Al2O3 nanofibrous membranes: Synthesis and multifunctionality for environmental remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26396-26404. |
[1] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[2] | BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883. |
[3] | LIU Chaojun, LIU Junjie, DING Yike, ZHANG Jianqing. Structure and properties of PTFE membrane for high efficiency air filtration [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4367-4374. |
[4] | WANG Hui, LIU Xinyi, WANG Wei, WAN Tong, LI Zongjie, WANG Shaoyu, CHENG Bowen. Research and application of electrospun nanofibers with special morphology: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4341-4356. |
[5] | ZHOU Lisha, LI Ruonan, BIAN Yujie, CHEN Shunsheng. Preparation of TOCNF and magnetic carboxymethyl chitosan nanoparticles composite and adsorption properties of Pb2+ [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 901-910. |
[6] | LI Ruonan, ZHOU Lisha, CHEN Shunsheng, XU Jianxiong, DENG Zilong, ZHANG Hongcai. Research progress on adsorption of heavy metals by cellulose nanofibers and their modified products [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 310-319. |
[7] | LIU Rongtao, ZHANG Shiyang, HUANG Xingwen, PENG Xiaokang, MIN Yonggang. Effect of biocompatibility on surface morphology of polyaniline/polylactic acid composite nanofibers [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4406-4412. |
[8] | LUO Huiling, SHAO Zhufeng, WANG Shubo, XU Xianlin. Preparation and performance of CC3 immobilized PAN nanofibers and its modified Nafion hybrid proton exchange membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3854-3861. |
[9] | LI Xiangye, BAI Tianjiao, WENG Xin, ZHANG Bing, WANG Zhenzhen, HE Tieshi. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329. |
[10] | Dejun XU, Benhe ZHONG, Zhiye ZHANG, Dehua XU, Xinlong WANG. Research progress of preparation and application of water-soluble ammonium polyphosphate [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 378-385. |
[11] | Linchang MAO, Junhong JIN, Shenglin YANG, Guang LI. Performance of porous carbon nanofibers as microporous layer for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3995-4001. |
[12] | Tingting LÜ,Ying AN,Yujian LIU,Haoyi LI,Jing TAN,Weimin YANG. Preparation of egg white protein/polyethylene oxide nanofibers by electrospinning [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5487-5491. |
[13] | Renjiang LÜ, Renhao CAI, Yingjie LI, Lidi GAO, Shili QIN. Preparation and electrochemical property of CeO2 doped hollow carbon nanofibers [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2854-2861. |
[14] | Dan DENG, LIYubao,Jinhui HUANG,Fuhua SUN,Yi ZUO,Jidong LI,Yaning WANG. Preparation and characterization of a guided tissue regeneration membrane constructed by core-shell polycaprolactone/chitosan fibers [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1501-1508. |
[15] | MENG Rongqian, LI Qiaoling, JIN Riya. Progress of titanium dioxide nanostructures as carriers in sustained and controlled drug-release delivery system [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3980-3987. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |