Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 310-319.DOI: 10.16085/j.issn.1000-6613.2021-0391
• Materials science and technology • Previous Articles Next Articles
LI Ruonan1(), ZHOU Lisha1, CHEN Shunsheng1, XU Jianxiong2, DENG Zilong3, ZHANG Hongcai1,2()
Received:
2021-02-21
Revised:
2021-04-07
Online:
2022-01-24
Published:
2022-01-05
Contact:
ZHANG Hongcai
李若男1(), 周丽莎1, 陈舜胜1, 徐建雄2, 邓子龙3, 张洪才1,2()
通讯作者:
张洪才
作者简介:
李若男(1995—),女,硕士研究生,研究方向为水产品加工与贮藏。E-mail:基金资助:
CLC Number:
LI Ruonan, ZHOU Lisha, CHEN Shunsheng, XU Jianxiong, DENG Zilong, ZHANG Hongcai. Research progress on adsorption of heavy metals by cellulose nanofibers and their modified products[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 310-319.
李若男, 周丽莎, 陈舜胜, 徐建雄, 邓子龙, 张洪才. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0391
1 | CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67: 489-512. |
2 | ZHU Z P, TONG Y P, TANG W Y, et al. Distribution of As, Cd, and Pb in seafood in Southern China and their oral bioavailability in mice[J]. Environmental Science and Pollution Research, 2017, 24(4): 3572-3581. |
3 | MAULVAULT A L, ANACLETO P, BARBOSA V, et al. Toxic elements and speciation in seafood samples from different contaminated sites in Europe[J]. Environmental Research, 2015, 143: 72-81. |
4 | GENG Y, JIANG L J, JIANG H X, et al. Assessment of heavy metals, fungicide quintozene and its hazardous impurity residues in medical Panax notoginseng(Burk) F.H.Chen root[J]. Biomedical Chromatography, 2019, 33(2): e4378. |
5 | HAMAD A A, HASSOUNA M S, SHALABY T I, et al. Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals[J]. International Journal of Biological Macromolecules, 2020, 151: 1299-1313. |
6 | ISOGAI A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials[J]. Journal of Wood Science, 2013, 59(6): 449-459. |
7 | KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: a new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 5438-5466. |
8 | LAVOINE N, DESLOGES I, DUFRESNE A, et al. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review[J]. Carbohydrate Polymers, 2012, 90(2): 735-764. |
9 | ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in surface-modified cellulose nanofibrils[J]. Progress in Polymer Science, 2019, 88: 241-264. |
10 | ZHU C T, SOLDATOV A, MATHEW A P. Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(Ⅱ) onto TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2017, 9(22): 7419-7428. |
11 | LIU P, OKSMAN K, MATHEW A P. Surface adsorption and self-assembly of Cu(Ⅱ) ions on TEMPO-oxidized cellulose nanofibers in aqueous media[J]. Journal of Colloid and Interface Science, 2016, 464:175-182. |
12 | YAO C, WANG F, CAI Z, et al. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions[J]. RSC Advances, 2016, 6(95): 92648-92654. |
13 | YANG R, AUBRECHT K B, MA H Y, et al. Thiol-modified cellulose nanofibrous composite membranes for chromium (Ⅵ) and lead (Ⅱ) adsorption[J]. Polymer, 2014, 55(5): 1167-1176. |
14 | RONG L D, ZHU Z M, WANG B J, et al. Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions[J]. Cellulose, 2018, 25(5): 3025-3035. |
15 | GHANADPOUR M, CAROSIO F, LARSSON P T, et al. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials[J]. Biomacromolecules, 2015, 16(10): 3399-3410. |
16 | ILLY N, FACHE M, MÉNARD R, et al. Phosphorylation of bio-based compounds: the state of the art[J]. Polymer Chemistry, 2015, 6(35): 6257-6291. |
17 | SUFLET D M, CHITANU G C, POPA V I. Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose[J]. Reactive and Functional Polymers, 2006, 66(11): 1240-1249. |
18 | LEHTONEN J, HASSINEN J, KUMAR A A, et al. Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture[J]. Cellulose, 2020, 27(18): 10719-10732. |
19 | ABOU-ZEID R E, DACRORY S, ALI K A, et al. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution[J]. International Journal of Biological Macromolecules, 2018, 119: 207-214. |
20 | LIIMATAINEN H, SIRVIÖ J, PAJARI H, et al. Regeneration and recycling of aqueous periodate solution in dialdehyde cellulose production[J]. Journal of Wood Chemistry and Technology, 2013, 33(4): 258-266. |
21 | HOKKANEN S, REPO E, SUOPAJÄRVI T, et al. Adsorption of Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3): 1471-1487. |
22 | HONG H J, YU H, PARK M, et al. Recovery of platinum from waste effluent using polyethyleneimine-modified nanocelluloses: effects of the cellulose source and type[J]. Carbohydrate Polymers, 2019, 210: 167-174. |
23 | TANG C X, BRODIE P, LI Y Z, et al. Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions[J]. Chemical Engineering Journal, 2020, 392: 124821. |
24 | HASANPOUR M, HATAMI M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study[J]. Advances in Colloid and Interface Science, 2020, 284: 102247. |
25 | JI Y, WEN Y Y, WANG Z, et al. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(Ⅱ) and organic pollutants removal[J]. Journal of Cleaner Production, 2020, 255: 120276. |
26 | HOKKANEN S, REPO E, BHATNAGAR A, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose[J]. Environmental Technology, 2014, 35(18): 2334-2346. |
27 | KANG H L, LIU R G, HUANG Y. Graft modification of cellulose: methods, properties and applications[J]. Polymer, 2015, 70: A1-A16. |
28 | LUO Y W, WANG X G, LI B G, et al. Toward well-controlled ab initio RAFT emulsion polymerization of styrene mediated by 2-(((dodecylsulfanyl)carbonothioyl)sulfanyl) propanoic acid[J]. Macromolecules, 2011, 44(2): 221-229. |
29 | ANIRUDHAN T S, DEEPA J R, CHRISTA J. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(Ⅱ) from nuclear industry wastewater samples[J]. Journal of Colloid and Interface Science, 2016, 467: 307-320. |
30 | LI Z N, WU C J, ZHAO K, et al. Polydopamine-assisted synthesis of raspberry-like nanocomposite particles for superhydrophobic and superoleophilic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 80-91. |
31 | MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126: 199-207. |
32 | HUANG C F, CHEN J K, TSAI T Y, et al. Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP[J]. Polymer, 2015, 72: 395-405. |
33 | LIU P, BORRELL P F, BOŽIČ M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials, 2015, 294: 177-185. |
34 | HOKKANEN S, REPO E, SILLANPÄÄ M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223: 40-47. |
35 | CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water[J]. Carbohydrate Polymers, 2020, 234: 115881. |
36 | SRIVASTAVA S, KARDAM A, RAJ K R. Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals[J]. International Journal of Green Nanotechnology, 2012, 4(1): 46-53. |
37 | SEHAQUI H, LARRAYA U P, LIU P, et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment[J]. Cellulose, 2014, 21(4): 2831-2844. |
38 | ZHANG N, ZANG G L, SHI C, et al. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2016, 316: 11-18. |
39 | ZHU H X, JIA S R, WAN T, et al. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions[J]. Carbohydrate Polymers, 2011, 86(4): 1558-1564. |
40 | ZHANG X F, ZHAO J Q, CHENG L, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+ adsorption[J]. RSC Adv., 2014, 4(98): 55195-55201. |
41 | GENG B Y, WANG H Y, WU S, et al. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(Ⅱ) ions from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11715-11726. |
42 | ZHU C, LIU P, MATHEW A P. Self-assembled TEMPO cellulose nanofibers: graphene oxide-based biohybrids for water purification[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 21048-21058. |
43 | TANG J T, SONG Y, ZHAO F P, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412. |
44 | LI J, XU Z Y, WU W B, et al. Nanocellulose/poly(2-(dimethylamino)ethyl methacrylate) Interpenetrating polymer network hydrogels for removal of Pb(Ⅱ) and Cu(Ⅱ) ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 474-480. |
45 | SUOPAJÄRVI T, LIIMATAINEN H, KARJALAINEN M, et al. Lead adsorption with sulfonated wheat pulp nanocelluloses[J]. Journal of Water Process Engineering, 2015, 5: 136-142. |
46 | LEITNER J, HINTERSTOISSER B, WASTYN M, et al. Sugar beet cellulose nanofibril-reinforced composites[J]. Cellulose, 2007, 14(5): 419-425. |
47 | MA H Y, HSIAO B S, CHU B. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water[J]. ACS Macro Letters, 2012, 1(1): 213-216. |
48 | ZHANG D, XU W, CAI J, et al. Citric acid-incorporated cellulose nanofibrous mats as food materials-based biosorbent for removal of hexavalent chromium from aqueous solutions[J]. International Journal of Biological Macromolecules, 2020, 149: 459-466. |
49 | SIRVIÖ J A, HASA T, LEIVISKÄ T, et al. Bisphosphonate nanocellulose in the removal of vanadium(Ⅴ) from water[J]. Cellulose, 2016, 23(1): 689-697. |
50 | ZHOU Y M, FU S Y, ZHANG L L, et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(Ⅱ)[J]. Carbohydrate Polymers, 2014, 101: 75-82. |
51 | LUO Q Y, YUAN H M, ZHANG M, et al. A 3D porous fluorescent hydrogel based on amino-modified carbon dots with excellent sorption and sensing abilities for environmentally hazardous Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2021, 401: 123432. |
52 | LI Y Q, GUO C F, SHI R H, et al. Chitosan/ nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb(Ⅱ) ions from aqueous solution[J]. Carbohydrate Polymers, 2019, 223: 115048. |
53 | FIORATI A, GRASSI G, GRAZIANO A, et al. Eco-design of nanostructured cellulose sponges for sea-water decontamination from heavy metal ions[J]. Journal of Cleaner Production, 2020, 246: 119009. |
54 | QIAN Z C, WANG Z, ZHAO N, et al. Aerogels derived from polymer nanofibers and their applications[J]. Macromolecular Rapid Communications, 2018, 39(14): 1700724. |
55 | TANG C X, BRODIE P, BRUNSTING M, et al. Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal[J]. Carbohydrate Polymers, 2020, 242: 116397. |
56 | ZHU F, ZHENG Y M, ZHANG B G, et al. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment[J]. Journal of Hazardous Materials, 2021, 401: 123608. |
57 | ZHANG W Q, DUO H Q, LI S J, et al. An overview of the recent advances in functionalization biomass adsorbents for toxic metals removal[J]. Colloid and Interface Science Communications, 2020, 38: 100308. |
58 | MWAFY E A, MOSTAFA A M. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu(Ⅱ) from waste water[J]. Radiation Physics and Chemistry, 2020, 177: 109172. |
59 | MOHAMMED N, GRISHKEWICH N, TAM K C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes[J]. Environmental Science: Nano, 2018, 5(3): 623-658. |
60 | ABOUZEID R E, KHIARI R, EL-WAKIL N, et al. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment[J]. Biomacromolecules, 2019, 20(2): 573-597. |
61 | KARIM Z, CLAUDPIERRE S, GRAHN M, et al. Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture[J]. Journal of Membrane Science, 2016, 514: 418-428. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[12] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[13] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[14] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[15] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |