Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3314-3329.DOI: 10.16085/j.issn.1000-6613.2020-1330
• Materials science and technology • Previous Articles Next Articles
LI Xiangye1(), BAI Tianjiao1, WENG Xin1, ZHANG Bing1, WANG Zhenzhen1, HE Tieshi1,2()
Received:
2020-07-13
Revised:
2020-08-21
Online:
2021-06-22
Published:
2021-06-06
Contact:
HE Tieshi
李祥业1(), 白天娇1, 翁昕1, 张冰1, 王珍珍1, 何铁石1,2()
通讯作者:
何铁石
作者简介:
李祥业(1992—),男,硕士研究生,研究方向为电化学功能材料、超级电容器等。E-mail:基金资助:
CLC Number:
LI Xiangye, BAI Tianjiao, WENG Xin, ZHANG Bing, WANG Zhenzhen, HE Tieshi. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329.
李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1330
1 | SHEN L E, YU L, YU X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J]. Angewandte Chemie: International Edition, 2015, 54(6): 1868-1872. |
2 | DING J, WANG H L, LI Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy & Environmental Science, 2015, 8(3):941-955. |
3 | 杨乐, 余金河, 付蓉, 等. 超级电容器用solvent-in-salt型电解液的研究进展[J]. 化工学报, 2020, 71 (6): 2457-2465. |
YANG Le, YU Jinhe, FU Rong, et al. Research progress of solvent-in-salt electrolyte for supercapacitor[J]. CIESC Journal, 2020, 71 (6): 2457-2465. | |
4 | LI L, ZHANG M Y, ZHANG X J, et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 364: 234-241. |
5 | ZHANG S, ZHU J, QING Y, et al. Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors[J]. Advanced Functional Materials, 2018, 28(52): 1805898. |
6 | YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816. |
7 | XIONG G P, MENG C Z, REIFENBERGER R G, et al. A review of graphene-based electrochemical microsupercapacitors[J]. Electroanalysis, 2014, 26(1): 30-51. |
8 | SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 1-10. |
9 | HE G, SONG Y, CHEN S, et al. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials[J]. Journal of Materials Science, 2018, 53(13): 9721-9730. |
10 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
11 | IKE I S, SIGALAS I, IYUKE S. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 661-680. |
12 | MAJUMDAR D, MANDAL M, BHATTACHARYA S K. V2O5 and its carbon-based nanocomposites for supercapacitor applications[J]. Chemelectrochem, 2019, 6(6): 1623-1648. |
13 | CHEN Z X, LU H B. Overview of graphene/polyaniline composite for high-performance supercapacitor[J]. Chemical Journal of Chinese Universities, 2013, 34(9): 2020-2033. |
14 | WU N S, LOW J, LIU T, et al. Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials[J]. Applied Surface Science, 2017, 413: 35-40. |
15 | LI Y H, CAO L J, QIAO L, et al. Ni Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(18): 6540-6548. |
16 | LIN L Y, NING H M, SONG S F, et al. Flexible electrochemical energy storage: the role of composite materials[J]. Composites Science and Technology, 2020, 192(19): 108102. |
17 | YANG H Q, KOU S Q. Recent advances of flexible electrospun nanofibers-based electrodes for electrochemical supercapacitors: a minireview[J]. International Journal of Electrochemical Science, 2019, 14(8): 7811-7831. |
18 | NIE G D, ZHU Y, TIAN D, et al. Research progress in the electrospun nanofiber. based supercapacitor electrode materials[J]. Chemical Journal of Chinese Universities, 2018, 39(7): 1349-1363. |
19 | GUPTA R, KUMAR R, SHARMA A, et al. Novel Cu-carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells[J]. International Journal of Energy Research, 2015, 39(5): 668-680. |
20 | MOHAMED ISMAIL M, HEMAANANDHAN S, MANI D, et al. Facile preparation of Mn3O4/rGO hybrid nanocomposite by sol-gel in situ reduction method with enhanced energy storage performance for supercapacitor applications[J]. Journal of Sol-Gel Science and Technology, 2020, 93(3): 703-713. |
21 | GAN Y, WANG C, CHEN X, et al. High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices[J]. Chemical Engineering Journal, 2020, 392: 123661. |
22 | TIAN D, LU X F, NIE G D, et al. Direct growth of Ni-Mn-O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications[J]. Inorganic Chemistry Frontiers, 2018, 5(3): 635-642. |
23 | TIAN D, LU X F, NIE G D, et al. Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors[J]. Applied Surface Science, 2018, 458: 389-396. |
24 | LU X F, WANG C, FAVIER F, et al. Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance[J]. Advanced Energy Materials, 2017, 7(2): 1601301. |
25 | PATIL J V, MALI S S, KAMBLE A S, et al. Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach[J]. Applied Surface Science, 2017, 423: 641-674. |
26 | YANG K S, KIM B H. Electrospun metal oxide/carbon nanofiber composite electrode for supercapacitor application[J]. Applied Chemistry for Engineering, 2015, 26(3): 239-246. |
27 | WU Y Z, BOBBA C, RAMAKRISHNA S. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems[J]. Current Organic Chemistry, 2013, 17(13): 1411-1423. |
28 | WANG X, ZHANG W, CHEN M Z, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12): 1306. |
29 | HE G H, SONG Y H, CHEN S L, et al. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials[J]. Journal of Materials Science, 2018, 53(13): 9721-9730. |
30 | ZUSSMAN E, CHEN X, DING W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon, 2005, 43(10): 2175-2185. |
31 | YAN J H, DONG K Q, ZHANG Y Y, et al. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity[J]. Nature Communications, 2019,10: 5584-5593. |
32 | ABOAGYE A, LIU Y Y, RYAN J G, et al. Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors[J]. Materials Chemistry and Physics, 2018, 214: 557-563. |
33 | TAN Y T, LIN D S, LIU C, et al. Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: effect of thermal treatment temperature[J]. Journal of Materials Research, 2018, 33(9): 1120-1130. |
34 | TIAN D, LU X F, LI W M, et al. Research on electrospun nanofiber-based binder-free electrode materials for supercapacitors[J]. Acta Physico: Chimica Sinica, 2020, 36(2): 1904056. |
35 | PANI T K, SAHOO B B, SUNDARAY B. Carbon electrodes derived from polyacrylonitrile-polyethylene glycol blend for high-performance supercapcitor[J]. Materials Research Express, 2019, 6(12): 125077. |
36 | SHILPA S, SHARMA A. Free standing hollow carbon nanofiber mats for supercapacitor electrodes[J]. RSC Advances, 2016, 6(82): 78528-78537. |
37 | MA C, CHEN J N, FAN Q C, et al. Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode[J]. Journal of Materials Science, 2018, 53(6): 4527-4539., |
38 | HE T S, YU X D, BAI T J, et al. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor[J]. Ionics, 2020, 26(8): 4103-4111. |
39 | HE T S, FU Y R, MENG X L, et al. A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte[J]. Electrochimica Acta, 2018, 282: 97-104. |
40 | HE T S, SU Q Y, YILDIZ Z, et al. Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors[J]. Electrochimica Acta, 2016, 222: 1120-1127. |
41 | AN G H, KOO B R, AHN H J. Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for high-performance electrochemical capacitors[J]. Physical Chemistry Chemical Physics, 2016, 18(9): 6587-6594. |
42 | ZAINAB G, BABAR A A, ALI N, et al. Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption[J]. Journal of Colloid and Interface Science, 2020, 561: 659-667. |
43 | ABEYKOON N C, BONSO J S, FERRARIS J P. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends[J]. RSC Advances, 2015, 5(26): 19865-19873. |
44 | JOH H I, SONG H K, LEE C H, et al. Preparation of porous carbon nanofibers derived from graphene oxide/polyacrylonitrile composites as electrochemical electrode materials[J]. Carbon, 2014, 70: 308-312. |
45 | GOPALAKRISHNAN A, SAHATIYA P, BADHULIKA S. Template-assisted electrospinning of bubbled carbon nanofibers as binder-free electrodes for high-performance supercapacitors[J]. Chemelectrochem, 2018, 5(3): 531-539 |
46 | FAN Q C, MA C, WU L Q, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances, 2019, 9(12): 6419-6428. |
47 | GOPALAKRISHNAN A, SAHATIYA P, BADHULIKA S. Template-assisted electrospinning of bubbled carbon nanofibers as binder-free electrodes for high-performance supercapacitors[J]. Chemelectrochem, 2018, 5(3): 531-539. |
48 | ZHOU D, DONG Y, CUI L R, et al. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area[J]. Journal of Nanoparticle Research, 2014, 16(12): 1-9. |
49 | JIANG Q T, PANG X, GENG S T, et al. Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance[J]. Applied Surface Science, 2019,479:128-136. |
50 | ZHANG L J, JIANG Y Z, WANG L W, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta, 2016, 196: 189-196. |
51 | FAN L, YANG L, NI X Y, et al. Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors[J]. Carbon, 2016, 107: 629-637. |
52 | LI Z, ZHANG J W, YU L G, et al. Electrospun porous nanofibers for electrochemical energy storage[J]. Journal of Materials Science, 2017, 52(11): 6173-6195. |
53 | KIM C H, YANG C M, KIM Y A, et al. Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance[J]. Applied Surface Science, 2019, 497: 143693. |
54 | PERANANTHAN S, BONSO J S, FERRARIS J P. Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen[J]. Carbon, 2016, 106: 20-27. |
55 | ABEYKOON N C, GARCIA V, JAYAWICKRAMAGE R A, et al. Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM: DABA[J]. RSC Advances, 2017, 7(34): 20947-20959. |
56 | KIM C, YANG K S. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning[J]. Applied Physics Letters, 2003, 83(6): 1216-1218. |
57 | MA C, WANG R R, XIE Z Y, et al. Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes[J]. Journal of Porous Materials, 2017, 24(6): 1437-1445. |
58 | MA C, LI Y J, SHI J L, et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching[J]. Chemical Engineering Journal, 2014, 249: 216-225. |
59 | LIU Y W, LIU Q, WANG L, et al. Advanced supercapacitors based on porous hollow carbon nanofiber electrodes with high specific capacitance and large energy density[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4777-4786. |
60 | LI X, TIAN X D, YANG T, et al. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: an effective approach to coal waste management[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5742-5750. |
61 | LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275. |
62 | RAYMUNDO-PIÑERO E, AZAÍS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795. |
63 | YOON S H, LIM S, SONG Y, et al. KOH activation of carbon nanofibers[J]. Carbon, 2004, 42(8): 1723-1729. |
64 | AZARGOHAR R, DALAI A K. Steam and KOH activation of biochar: experimental and modeling studies[J]. Microporous and Mesoporous Materials, 2008, 110(3): 413-421. |
65 | LI Q, JIN B S, HUANG Y J, et al. Preparation of biomass activated carbon by steam activation[J]. Journal of Southeast University, 2009, 39(5): 1008-1011. |
66 | SHI G F, LIU C, WANG G Y, et al. Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers[J]. Ionics, 2019, 25(4): 1805-1812. |
67 | HEO Y J, LEE H I, LEE J W, et al. Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning[J]. Composites Part B: Engineering, 2019, 161: 10-17. |
68 | QIAN W X, LI X, ZHU X Q, et al. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors[J]. RSC Advances, 2020, 10(14): 8172-8180. |
69 | PERERA JAYAWICKRAMAGE R A, BALKUS K J, FERRARIS J P. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35): 9-18. |
70 | KIM C H, YANG C M, KIM Y A, et al. Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance[J]. Applied Surface Science, 2019, 497: 143693. |
71 | YANG T T, LI R Y, LONG X H, et al. Nitrogen and sulphur-functionalized multiple graphene aerogel for supercapacitors with excellent electrochemical performance[J]. Electrochimica Acta, 2016, 187: 143-152. |
72 | LIU D, YU S, SHEN Y L, et al. Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials[J]. Industrial & Engineering Chemistry Research, 2015, 54(50): 12570-12579. |
73 | LI R C, HU Z X, SHAO X F, et al. Large scale synthesis of nico layered double hydroxides for superior asymmetric electrochemical capacitor[J]. Scientific Reports, 2016, 6: 18737-18745. |
74 | DOU S, HUANG X B, MA Z L, et al. A simple approach to the synthesis of BCN graphene with high capacitance[J]. Nanotechnology, 2015, 26(4): 045402. |
75 | LIU Y, ZHANG Z Y, FANG Y R, et al. Ir-driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane[J]. Applied Catalysis B: Environmental, 2019, 252: 164-173. |
76 | WANG C Q, QIU F L, DENG H, et al. Study on the aqueous hybrid supercapacitor based on carbon-coated NaTi2(PO4)3 and activated carbon electrode materials[J]. Acta Chimica Sinica, 2017, 75(2): 241-246. |
77 | LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
78 | WANG K, LI L W, ZHANG T Z, et al. Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability[J]. Energy, 2014, 70: 612-617. |
79 | XIN G X, WANG Y H, JIA S P, et al. Synthesis of nitrogen-doped mesoporous carbon from polyaniline with an F127 template for high-performance supercapacitors[J]. Applied Surface Science, 2017, 422: 654-660. |
80 | MONDAL A K, KRETSCHMER K, ZHAO Y F, et al. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors[J]. Microporous and Mesoporous Materials, 2017, 246: 72-80. |
81 | NA W, JUN J, PARK J W, et al. Highly porous carbon nanofibers Co-doped with fluorine and nitrogen for outstanding supercapacitor performance[J]. Journal of Materials Chemistry A, 2017, 5(33): 17379-17387. |
82 | CAI J, NIU H T, LI Z Y, et al. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14946-14953. |
83 | RAMAKRISHNAN P, SHANMUGAM S. Nitrogen-doped porous multi-nano-channel nanocarbons for use in high-performance supercapacitor applications[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2439-2448. |
84 | BIANCO G V, LOSURDO M, GIANGREGORIO M M, et al. Exploring and rationalising effective N-doping of large area CVD-graphene by NH3 [J]. Physical Chemistry Chemical Physics, 2014, 16(8): 3632-3639. |
85 | LI M, XUE J M. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2507-2517. |
86 | GUO H L, SU P, KANG X F, et al. Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents[J]. Journal of Materials Chemistry A, 2013, 1(6): 2248-2255. |
87 | HAN J P, XU G Y, DING B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(15): 5352-5357. |
88 | LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4): 2225-2229. |
89 | SHI Q, ZHANG R Y, LYU Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon, 2015, 84: 335-346. |
90 | JIANG Q, LIU M Z, SHAO C L, et al. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage[J]. Electrochimica Acta, 2020, 330: 135212. |
91 | YAN S H, TANG C G, ZHANG H, et al. Free-standing cross-linked activated carbon nanofibers with nitrogen functionality for high-performance supercapacitors[J]. Nanotechnology, 2020, 31(2): 025402. |
92 | LU J J, YING Z R, LIU X D, et al. Preparation of cross-linked porous carbon nanofiber networks by electrospinning method and their electrochemical capacitive behaviors[J]. Acta Physico: Chimica Sinica, 2015, 31(11): 2099-2108. |
93 | XU Q, YU X L, LIANG Q H, et al. Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry, 2015, 739: 84-88. |
94 | ZHAO L, QIU Y J, YU J, et al. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density[J]. Nanoscale, 2013, 5(11): 4902-4909. |
95 | ZHANG L F, ABOAGYE A, KELKAR A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal of Materials Science, 2014, 49(2): 463-480. |
96 | NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers a state of the art review[J]. Progress in Polymer Science, 2012, 37(3): 487-513. |
97 | HOSSEINI S R, GHASEMI S, VAHDAT Y. The effect of electro-polymerization method on supercapacitive properties of poly(o-anisidine)/CNT nanocomposites[J]. Synthetic Metals, 2018, 246: 16-22. |
98 | YILMAZ M, HSU S H, RAINA S, et al. Integrated photocapacitors based on dye-sensitized TiO2/FTO as photoanode and MnO2 coated micro-array CNTs as supercapacitor counter electrode with TBABF4 electrolyte[J]. Journal of Renewable and Sustainable Energy, 2018, 10(6): 063503. |
99 | WANG X, ZHANG W, CHEN M, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12): 1306-1320. |
100 | LAI C L, ZHOU Z P, ZHANG L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247: 134-141. |
101 | TIAN D, LU X, LI W, et al. Research on electrospun nanofiber-based binder-free electrode materials for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056. |
102 | KIM S Y, YANG K, KIM B H. Enhanced electrical capacitance of heteroatom-decorated nanoporous carbon nanofiber composites containing graphene[J]. Electrochimica Acta, 2014, 137: 781-788. |
103 | DAI Z, REN P G, JAN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937. |
104 | SHI H H, JANG S, REZA-UGALDE A, et al. Hierarchically structured nitrogen-doped multilayer reduced graphene oxide for flexible intercalated supercapacitor electrodes[J]. ACS Applied Energy Materials, 2020, 3(1): 987-997. |
105 | ZHOU Z P, WU X F. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization[J]. Journal of Power Sources, 2013, 222(15): 410-416. |
106 | ZHOU Z P, WU X F, FONG H. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors[J]. Applied Physics Letters, 2012, 100(2): 023115. |
[1] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[4] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[5] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[6] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[7] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[8] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[9] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[10] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[11] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[12] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[13] | ZHAO Wangrui, LIU Yan, ZHANG Wei, DENG Huining. Fe3+ ions induced rapid electrodeposition of polydopamine-polyethyleneimine for monovalent selective membrane fabrication [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1508-1514. |
[14] | TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896. |
[15] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |