[1] ITTISANRONNACHAI S, ORIKASA H, INOKUMA N, et al. Small molecule delivery using carbon nano-test-tubes[J]. Carbon, 2008, 46(10):1361-1363.
[2] 李薇, 赵一凡, 曹媛媛, 等。新型纳米棒药物载体的合成及性能研究进展[J]. 化工进展, 2017, 36(9):3436-3444. LI W, ZHAO Y F, CAO Y Y, et al. Fabrication and properties of novel nanorods drug carriers[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3436-3444.
[3] PALMQUISTA N G M, NEDELECB J M, SEISENBAEVA G A, et al. Controlling nucleation and growth of nano-CaCO3 via CO2 sequestration by a calcium alkoxide solution to produce nanocomposites for drug delivery applications[J]. Acta Biomater., 2017, 57:426-434.
[4] YIN Z F, WU L, YANG H G, et al. Recent progress in biomedical applications of titanium dioxide[J]. Phys. Chem. Chem. Phys., 2013, 14:4844-4858.
[5] CHAO C S, LIU K H, TUNG W L, et al. Bioactive TiO2 ultrathin film with worm-like mesoporosity for controlled drug delivery[J]. Micropor. Mesopor. Mat., 2012, 152:58-63.
[6] ZHOU J C, FRANK M A, YANG Y Y, et al. A novel local drug delivery system:superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Mat. Sci. Eng. C, 2018, 82:277-283.
[7] JAROSZ M, PAWLIK A, SZUWARZYNSKI M, et al. Nanoporous anodic titanium dioxide layers as potential drug delivery systems:drug release kinetics and mechanism[J]. Colloids Surfaces B, 2016, 143:447-454.
[8] SHERIN S, SHEEJA S, DEVI R S, et al. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications[J]. Chem-Biol. Interact., 2017, 275:35-46.
[9] GE F, LIN J, HUANG X X, et al. Preparation and drug release behavior of TiO2 nanorod films with incorporating mesoporous bioactive glass[J]. Thin Solid Films, 2015, 584:2-8.
[10] SIGNORETTO M, GHEDINI E, NICHELE V, et al. Effect of textural properties on the drug delivery behavior of nanoporous TiO2 matrices[J]. Micropor. Mesopor. Mat., 2011, 139(1/2/3):189-196.
[11] WANG X K, GITTENS R A, SONG R, et al. Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential[J]. Acta Biomater., 2012, 8(2):878-885.
[12] 李君建, 李巧玲. 载银TiO2/碳纳米管复合材料的制备及其催化杀菌性能[J]. 化工进展, 2015, 34(7):1887-1893. LI J J, LI Q L. Synthesis of Ag-TiO2/CNTs nanopartical composites and their photocatalytic activity and antiseptic property[J]. Chemical Industry and Engineering Progress, 2015, 34(7):1887-1893.
[13] SUI Y L, LIU Q X, JIANG T, et al. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings[J]. Appl. Surf. Sci., 2018, 428:1149-1158.
[14] NEŠIC M, ZAKULA J, KORICANAC L, et al. Light controlled metallo-drug delivery system based on the TiO2-nanoparticles and Ru-complex[J]. J. Photoch. Photobio. A, 2017, 347:55-66.
[15] MOGHANIAN A, SHARIFIANJAZI F, ABACHI P, et al. Production and properties of Cu/TiO2 nano-composites[J]. J. Alloy. Compd., 2017, 698:518-524.
[16] ZHU R R, ZHU Y J, ZHANG M, et al. The induction of maturation on dendritic cells by TiO2 and Fe3O4/TiO2 nanoparticles via NF-κB signaling pathway[J]. Mater. Sci. Eng. C, 2014, 39:305-314.
[17] LI X J, WANG C, XIA N, et al. Novel ZnO-TiO2 nanocomposite arrays on Ti fabric for enhanced photocatalytic application[J]. J. Mol. Struct., 2017, 1148:347-355.
[18] ES'HAGHI Z, SHAHRI E E. Sol-gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography[J]. J. Chromatogr. B, 2014, 973:142-151.
[19] PU S Y, ZHU R X, MA H, et al. Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G[J]. Appl. Catal. B:Environ., 2017, 218:208-219.
[20] LI Z Q, QI M Y, TU C Y, et al. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite:properties and mechanism[J]. Appl. Surf. Sci., 2017, 425:765-775.
[21] LIANG H, WANG Z Q, LIAO L M, et al. High performance photocatalysts:montmorillonite supported-nano TiO2 composites[J]. Optik-International Journal for Light and Electron Optics, 2017, 136:44-51.
[22] ZHOU R, HUANG Y Z, WAN L, et al. Constructing aligned single-crystalline TiO2 nanorod array photoelectrode for PbS quantum dot-sensitized solar cell with high fill factor[J]. J. Alloy. Compd., 2017, 716:162-170.
[23] FARIA H A M, QUEIROZ A A A. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes[J]. Mater. Sci. Eng. C, 2015, 56:260-268.
[24] TORRES C C, CAMPOS C H, DIAZ C, et al. PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications[J]. Mater. Sci. Eng. C, 2016, 65:164-171.
[25] WANG T Y, JIANG H T, WAN L, et al. Potential application of functional porous TiO2 nanoparticlesin light-controlled drug release and targeted drug delivery[J]. Acta Biomater., 2015, 13:354-363..
[26] ENSAFL A, KHODDAMI E, NABIYAN A, et al. Study the role of poly(diethyl aminoethyl methacrylate) as a modified and grafted shell for TiO2 and ZnO nanoparticles, application in flutamide delivery[J]. React. Funct. Polym., 2017, 116:1-8.
[27] KAMARI Y, GHIACI M. Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system[J]. Micropor. Mesopor. Mat., 2016, 234:361-369.
[28] OGINO C, SHIBATA N, SASAI R, et al. Construction of protein-modified TiO2 nanoparticles for use with ultrasound irradiation in a novel cell injuring method[J]. Bioorg. Medl. Chem. Lett., 2010, 20(17):5320-5325.
[29] ROSUM M C, BRATU I. Promising psyllium-basedcomposite containing TiO2 nanoparticles as aspirin-carriermatrix[J]. Prog. Nat. Sci.:Mate., 2014, 24:205-209.
[30] ZHAO J, MILANOVA M, WARMOESKERKEN M M C G, et al. Surface modification of TiO2 nanoparticles with silane coupling agents[J]. Colloid Surface A, 2012, 413:273-279.
[31] KAMARI Y, GHIACI P, GHIACI M. Study on montmorillonite/insulin/TiO2 hybrid nanocomposite as a new oral drug-delivery system[J]. Mater. Sci. Eng. C, 2017, 75:822-828.
[32] SHEN S, WU L, LIU J J, et al. Core-shell structured Fe3O4/TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer[J]. Int. J. Pharmaceut., 2015, 486:380-388.
[33] JIA H Y, KERR L. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface[J]. J. Pharmaceut. Sci., 2013, 102(7):2341-2348.
[34] 李蓓, 王亭杰, 郭奋, 等. 硅铝包覆钛白粉水悬浮液pH值调控规律[J]. 北京化工大学学报(自然科学版), 2010, 37(6):41-45. LI B, WANG T J, GUO F, et al. pH control of suspen-sions of titania coated with silica and alumina[J]. Journal of Beijing University of Chemical Technology(Natural Science), 2010, 37(6):41-45.
[35] RAHNAMA H, SATTARZADEH A, KAZEMI F, et al. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction[J]. Anal. Biochem., 2016, 513:68-76.
[36] HAO X Y, LI M, ZHANG L, et al. Photocatalyst TiO2/WO3/GO nano-composite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination[J]. J. Ind. Eng.Chem., 2017, 55:140-148.
[37] ZHANG Y, HE F, SUN Z W, et al. Controlled delivery of dexamethasone from TiO2 film with nanoporous structure on Ti25Nb3Mo2Sn3Zr biomedical alloy without polymeric carrier[J]. Mater. Lett., 2014, 128:384-387.
[38] 王勇, 邹建, 高家诚, 等. 纳米TiO2表面无机/有机复合改性研究[J]. 材料科学与工艺, 2007, 15(6):858-860. WANG Y, ZOU J, GAO J C, et al. Surface modification of nano-TiO2 particles with inorganic and organic composite film[J]. Material Science & Technology, 2007, 15(6):858-860.
[39] 秦悦, 易德莲, 伍林, 等. 硅烷偶联剂水解及对钛白粉的改性研究[J]. 无机盐工业, 2014, 46(2):34-37. QIN Y, YI D L, WU L, et al. Hydrolysis of silane coupling agent and organic modification of titanium dioxide[J]. Inorganic Chemicals Industry, 2014, 46(2):34-37.
[40] XIAO G, ZHANG X, ZHANG W Y, et al. Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles/chitosan-TiO2 organic-inorganic composites for water disinfection[J]. Appl. Catal. B:Environ., 2015, 170/171:255-262.
[41] FAN X L, CHEN K, HE X C, et al. Nano-TiO2/collagen-chitosan porous scaffold for wound repairing[J]. Int. J. Biol. Macromol., 2016, 91:15-22.
[41] 谢向阳, 林雯, 李旸, 等. 刺激响应型纳米药物递送系统设计与构建研究进展[J]. 国际药学研究杂志, 2013, 40(5):584-587. XIE X Y, LIN W, LI Y, et al. Design and construction of stimuli-responsive nanoparticulate drug delivery systems:research advances[J]. Journal of International Pharmaceutical Research, 2013, 102(7):2341-2348.
[42] CHEN Y H, LIN H L, TONG R H, et al. Near-infrared light-mediated DOX-UCNPs/mHTiO2 nanocomposite for chemo/photodynamic therapy and imaging[J]. Colloid Surfaces B, 2017, 154:429-437.
[43] 卢婷婷. 基于介孔二氧化钛超声控释药物转运系统的构建及初步研究[D]. 郑州:郑州大学, 2017. LU T T. Preparation and preliminary research on ultrasonic controlled release drug delivery system based on mesoporous titanium dioxide[D]. Zhengzhou:Zhengzhou University, 2017.
[44] POURJAVADI A, TEHRANI Z M, MOGHANAKI A A. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine[J]. Pharm. Res., 2016, 33(2):417-432..
[45] JIA H Y, KERR L. Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study[J]. J. Appl. Polym. Sci., 2015, 132:41570-41581.
[46] 江峰. 二氧化钛纳米管制备及其温敏药物控释系统的研究[D]. 重庆:重庆大学, 2010. JIANG F. The study on the fabrication of titanium nanotubes and temperature-responsive controlled drug delivery system based on titanium nanotubes[D]. Chongqing:Chongqing University, 2010.
[47] 陈朝阳. 远程调控介孔二氧化钛药物递送系统的构建及初步应用[D]. 郑州:郑州大学, 2016. CHEN C Y. The construction and primary application of remotecontrol drug release from a mesoporous titanium drug delivery system[D]. Zhengzhou:Zhengzhou University, 2016. |