Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 5057-5065.DOI: 10.16085/j.issn.1000-6613.2019-0334
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Haitian ZHAO1(),Xudong LI1,Fengqin CAO2,3,Yan NI2,3,Lei YAO2,3()
Received:
2019-03-07
Online:
2019-11-05
Published:
2019-11-05
Contact:
Lei YAO
赵海田1(),李旭东1,曹凤芹2,3,倪艳2,3,姚磊2,3()
通讯作者:
姚磊
作者简介:
赵海田(1979—),男,副教授,博士,研究方向为天然产物化学。E-mail:基金资助:
CLC Number:
Haitian ZHAO,Xudong LI,Fengqin CAO,Yan NI,Lei YAO. Advances in preparation and application of chitosan-based nanoparticles for drug delivery system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5057-5065.
赵海田,李旭东,曹凤芹,倪艳,姚磊. 基于壳聚糖纳米粒子载药体系的制备与应用研究进展[J]. 化工进展, 2019, 38(11): 5057-5065.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0334
方法 | 优点 | 局限性 |
---|---|---|
离子交联法 | 操作方便,反应条件温和,完全在水溶液中进行, 有利于保持所包封物质的活性 | 通过弱物理相互作用力形成交联,稳定性相对较差 |
聚电解质复合法 | 反应条件温和,避免了有机溶剂的使用和其他物质的 引入,纳米粒子在本质上是自发形成的 | 纳米级的聚电解质络合物胶束必须在很稀的浓度下才能形成;机械强度差、降解速度快 |
乳化交联法 | 稳定性好,药物释放平稳、缓慢 | 所用的交联剂通常带有毒性,如有残留对有机体不利;内在不可切割的 共价交联阻碍了在靶点部位的药物释放与扩散 |
喷雾干燥法 | 操作简单,易于工业化生产 | 雾化操作时,芯材暴露于高温环境中易被氧化;囊壁易形成空隙,导致微囊致密性较差,囊壁易于坍塌 |
溶剂蒸发法 | 条件温和,适用于疏水性药物 | 处理条件要求较高,过程伴随高剪切力处理;需使用有机溶剂 |
方法 | 优点 | 局限性 |
---|---|---|
离子交联法 | 操作方便,反应条件温和,完全在水溶液中进行, 有利于保持所包封物质的活性 | 通过弱物理相互作用力形成交联,稳定性相对较差 |
聚电解质复合法 | 反应条件温和,避免了有机溶剂的使用和其他物质的 引入,纳米粒子在本质上是自发形成的 | 纳米级的聚电解质络合物胶束必须在很稀的浓度下才能形成;机械强度差、降解速度快 |
乳化交联法 | 稳定性好,药物释放平稳、缓慢 | 所用的交联剂通常带有毒性,如有残留对有机体不利;内在不可切割的 共价交联阻碍了在靶点部位的药物释放与扩散 |
喷雾干燥法 | 操作简单,易于工业化生产 | 雾化操作时,芯材暴露于高温环境中易被氧化;囊壁易形成空隙,导致微囊致密性较差,囊壁易于坍塌 |
溶剂蒸发法 | 条件温和,适用于疏水性药物 | 处理条件要求较高,过程伴随高剪切力处理;需使用有机溶剂 |
1 | SHARIATINIAZ. Carboxymethyl chitosan: properties and biomedical applications[J]. International Journal of Biological Macromolecules B, 2018, 120: 1406-1419. |
2 | 王志华, 江阳阳, 余晓华, 等. 壳聚糖及其水溶性衍生物对小鼠免疫功能的影响[J]. 食品科学, 2016, 37(1): 198-202. |
WANGZ H, JIANGY Y, YUX H, et al. Effect of chitosan and its water-soluble derivatives on immune function in mice[J]. Food Science, 2016, 37(1): 198-202. | |
3 | QINC Q, DUY M, XIAOL. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability, 2002, 76(2): 211-218. |
4 | RINAUDOM. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632. |
5 | DUARTEM L, FERREIRAM C, MARVÃOM R, et al. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy[J]. International Journal of Biological Macromolecules, 2002, 31(2/3/4): 1-8. |
6 | LEGRANDP, ROMEROE A, COHENB E, et al. Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes[J]. Antimicrobial Agents and Chemotherapy, 1992, 36(11): 2518-2522. |
7 | TAJMIR-RIAHIH A, NAFISIS, SANYAKAMDHORNS, et al. Applications of chitosan nanoparticles in drug delivery[J]. Methods in Molecular Biology, 2014, 1141: 165-184. |
8 | SHEPHERDR, READERS, FALSHAWA. Chitosan functional properties[J]. Glycoconjugate Journal, 1997, 14(4): 535-542. |
9 | DESAIK G. Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33(2): 107-158. |
10 | MOUSAVIS A, GHOTASLOUR, KORDIS, et al. Antibacterial and antifungal effects of chitosan nanoparticles on tissue conditioners of complete dentures[J]. International Journal of Biological Macromolecules, 2018, 118: 881-885. |
11 | 吴益栋, 沈志森, 王幸媛, 等. 壳聚糖基纳米载药系统的制备及其在肿瘤靶向治疗中的应用研究[J]. 药物生物技术, 2018, 25(4): 333-339. |
WUY D, SHENZ S, WANGX Y, et al. The preparation and targeted therapy on tumor of chitosan-based nanoparticle drug system[J]. Pharmaceutical Biotechnology, 2018, 25(4): 333-339. | |
12 | 康宁, 刘长霞, 范小振. 壳聚糖基壁材在精油/鱼油微胶囊化方面的应用进展[J]. 化工进展, 2019, 38(3): 1509-1516. |
KANGN, LIUC X, FANX Z. Application progress of chitosan-based wall materials on microencapsulation of essential/fish oil[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1509-1516. | |
13 | 欧歌, 廖德华, 张凯, 等. 采用离子交联法制备壳聚糖胰岛素纳米粒的研究进展[J]. 中南药学, 2013, 11(2): 116-119, 156. |
OU G, LIAOD H, ZHANGK, et al. Progress in the preparation of chitosan insulin nanoparticles by ion crosslinking[J]. Central South Pharmacy, 2013, 11(2): 116-119, 156. | |
14 | LUOY C, WANGQ. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery[J]. International Journal of Biological Macromolecules, 2014, 64(3): 353-367. |
15 | NASKARS, SHARMAS, KOUTSUK. Chitosan-based nanoparticles: an overview of biomedical applications and its preparation[J]. Journal of Drug Delivery Science and Technology, 2019, 49: 61-68. |
16 | POLKA, AMSDENB, YAOK D, et al. Controlled release of albumin from chitosan-alginate microcapsules[J]. Journal of Pharmaceutical Sciences, 1994, 83(2): 178-185. |
17 | LIUL S, LIUS Q, NG S Y, et al. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres[J]. Journal of Controlled Release, 1997, 43(1): 65-74. |
18 | JAINA, THAKURK, SHARMAG, et al. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles[J]. Carbohydrate Polymers, 2016, 137: 65-74. |
19 | ELSAYEDA, ALREMAWIM, QINNAN, et al. Chitosan-Sodium lauryl sulfate nanoparticles as a carrier system for the invivo delivery of oral insulin[J]. AAPS Pharmscitech, 2011, 12(3): 958-964. |
20 | SADEGHIA M, DORKOOSHF A, AVADIM R, et al. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods[J]. International Journal of Pharmaceutics, 2008, 355(1): 299-306. |
21 | 郭渊, 王晓焕, 谢海燕. 壳聚糖-聚乙烯醇-海藻酸钠聚电解质复合膜的制备及吸水性能研究[J]. 新疆农业大学学报, 2017, 40(3): 198-203. |
GUOY, WANGX H, XIEH Y. Preparation and water absorption properties of chitosan polyvinyl alcohol sodium alginate polyelectrolyte composite membrane[J]. Journal of Xinjiang Agricultural University, 2017, 40(3): 198-203. | |
22 | 邓联东. 壳聚糖/聚谷氨酸键接阿霉素聚电解质复合纳米粒的研究[C]//2013医学前沿论坛暨第十三届全国肿瘤药理与化疗学术会议. 洛阳: 中国抗癌协会抗癌药物专业委员会, 2013. |
DENGL D. Study on chitosan/polyglutamic acid conjugated adriamycin polyelectrolyte composite nanoparticles[C]//2013 Medical Frontiers BBS and Proceedings of the 13th National Conference on oncology Pharmacology and Chemotherapy. Luoyang: Professional Committee of Oncology, Chinese Anti-Cancer Association, 2013. | |
23 | 赵婧, 苗艳青, 梁飞, 等. 温度/pH双重响应型壳聚糖纳米药物载体的制备及性能[J]. 功能材料, 2017, 48(8): 190-196. |
ZHAOJ, MIAOY Q, LIANGF, et al. Preparation and properties of temperature and pH sensitive chitosan nanoparticles as drug delivery system[J]. Journal of Functional Materials, 2017, 48(8): 190-196. | |
24 | NAGPALK, KUMARS K, MISHRAD N. Chitosan nanoparticles: a promising system in novel drug delivery[J]. Chemical and Pharmaceutical Bulletin, 2010, 58(11): 1423-1430. |
25 | 马莉华, 于炜婷, 马小军. 壳聚糖-海藻酸聚电解质复合膜(Ⅰ)激光共聚焦扫描显微镜分析形貌[J]. 膜科学与技术, 2005, 25(2): 30-33. |
MAL H, YUW T, MAX J. Chitosan-alginate polyelectrolyte complex membrane (Ⅰ) topography analysis by laser confocal scanning microscopy[J]. Membrane Science and Technology, 2005, 25(2): 30-33. | |
26 | 罗坤. PGA基聚电解质的静电络合、层层自组装及药物载体构建[D]. 上海: 上海大学, 2009. |
LUOK. Complexation, layer-by-layer assembly and drug carrier fabrication of polyelectrolytes based on poly(α, L-glutamic acid)[D]. Shanghai: Shanghai University, 2009. | |
27 | 刘慧. 壳聚糖微球/纳米粒的制备及其性能研究[D]. 杭州: 浙江大学, 2007. |
LIUH. Preparation and characterization of chitosan microspheres/nanoparticles[D]. Hangzhou: Zhejiang University, 2007. | |
28 | JIAD, WANGD, WUH, et al. Preparation and adsorption properties of magnetic Co0.5Ni0.5Fe2O4-chitosan nanoparticles[J]. Russian Journal of General Chemistry, 2016, 86(3): 691-695. |
29 | 邵丽, 邓阳全, 吴旭, 等. 载药壳聚糖缓释微球的制备及其释放研究[J]. 功能材料, 2009, 40(6): 959-961. |
SHAOL, DENGY Q, WUX, et al. Prepare and release of the chitosan sustained-release drug microspheres[J]. Journal of Functional Materials, 2009, 40(6): 959-961. | |
30 | MIF L, TANY C, LIANGH F, et al. Invivo biocompatibility and degradability of a novel injectable-chitosan-based implant[J]. Biomaterials, 2002, 23(1): 181-191. |
31 | RIEGGERB R, BAURERB, MIRZAYEVAA, et al. A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment[J]. Carbohydrate Polymers, 2018, 180: 46-54. |
32 | LIUZ, JIAOY, WANGY, et al. Polysaccharides-based nanoparticles as drug delivery systems[J]. Advanced Drug Delivery Reviews, 2008, 60(15): 1650-1662. |
33 | 崔青, 赵红, 张长桥, 等. 壳聚糖功能微球负载贵金属的研究进展[J]. 化工进展, 2017, 36(2): 595-601. |
CUIQ, ZHAOH, ZHANGC Q, et al. Research progress in noble metal-supported chitosan functional microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 595-601. | |
34 | 王雅萍. 几种中药活性成分载药纳米微球的制备及其生物活性研究[D]. 武汉: 武汉工程大学, 2015. |
WANGY P. Preparation and biological activity of several nano/microspheres contain the active ingredients from traditional Chinese medicine[D]. Wuhan: Wuhan Institute of Technology, 2015. | |
35 | 沈玲玲. 不同微胶囊化叶黄素理化性质及其应用[D]. 无锡: 江南大学, 2012. |
SHENL L. Study on the physicochemical properties and applications of microcapsulated lutein prepared by different methods[D]. Wuxi: Jiangnan University, 2012. | |
36 | MORLANDOA H, SENCADASV, CARDIIIOD, et al. Suppression of the photocatalytic activity of TiO2 nanoparticles encapsulated by chitosan through a spray-drying method with potential for use in sunblocking applications[J]. Powder Technology, 2018, 329: 252-259. |
37 | 秦倩. 壳聚糖/羧甲基壳聚糖自组装体系的构建与释药性能研究[D]. 郑州: 郑州大学, 2018. |
QINQ. Study on self-assembly mechanism of chitosan/carboxymethyl chitosan and drug release performance [D]. Zhengzhou: Zhengzhou University, 2018. | |
38 | 李鸿, 卓芸芸. 负载药物纳米粒子制备方法和应用的研究进展[J]. 广东化工, 2013, 40(8): 86-71. |
LIH, ZHUOY Y. Research of drug-loaded nanoparticles preparation methods and application[J]. Guangdong Chemical Industry, 2013, 40(8): 86-71. | |
39 | ALI A, AHMEDS. A review on chitosan and its nanocomposites in drug delivery[J]. International Journal of Biological Macromolecules, 2018, 109: 273-286. |
40 | GEORGEM, ABRAHAMT E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan: a review[J]. Journal of Controlled Release, 2006, 5(6): 1-14. |
41 | DINGF Y, LIH B, DUY M, et al. Recent advances in chitosan-based self-healing materials[J]. Research on Chemical Intermediates, 2018, 44(8): 4827-4840. |
42 | PATELM, SHAHT, AMINA. Therapeutic opportunities in colon specific drug delivery system[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24(2): 147-202. |
43 | 车秋凌, 李明春, 辛梅华. 壳聚糖及其衍生物在天然织物整理中的应用研究进展[J]. 化工进展, 2018, 37(11): 4330-4336. |
CHEQ L, LIM C, XINM H. Research progress of chitosan and its derivatives in natural fabric finishing[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4330-4336. | |
44 | SHANGY, DINGF Y, LIUJ, et al. Dual-drug release from chitin-based core-shell microspheres fabricated by coaxial electrospray[J]. Advances in Polymer Technology, 2018, 37(5): 1366-1373. |
45 | 冯作明, 戴晓雁, 丁晓霞. 抗肿瘤抗生素药物化疗引起恶心、呕吐的治疗对策[J]. 中国抗生素杂志, 2011, 36(7): 2-5. |
FENGZ M, DAIX Y, DINGX X. Anti-tumor antibiotic chemotherapy caused nausea, vomiting treatment countermeasures[J]. Chinese Journal of Antibiotics, 2011, 36(7): 2-5. | |
46 | KARIMIM H, MAHDAVINIAG R, MASSOUMIB. pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with K-carrageenan[J]. Materials Science and Engineering C, 2018, 91: 705-714. |
47 | GUOX L, ZHUANGQ F, JIT J, et al. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer[J]. Carbohydrate Polymers, 2018, 195: 311-320. |
48 | SALARR K, KUMARN. Synthesis and characterization of vincristine loaded folic acid-chitosan conjugated nanoparticles[J]. Resource-Efficient Technologies, 2016, 2(4): 199-214. |
49 | MEHATAA K, BHARTIS, SINGHP, et al. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy[J]. Colloids and Surfaces B: Biointerfaces, 2019, 173: 366-377. |
50 | 姚文杰, 辛梅华, 李明春, 等. pH值响应聚乙二醇化壳聚糖基隐形纳米胶束的制备及其载药性能[J]. 化工进展, 2015, 34(1): 173-177,223. |
YAOW J, XINM H, LIM C, et al. pH-responsive PEGylated nanoparticles based on dilauryl chitosan: preparation, physicochemical characterization and invitro evaluation[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 173-177,223. | |
51 | 林水森, 李明春, 辛梅华, 等. 壳聚糖及其衍生物抗菌机理研究进展[J].化学通报, 2014, 77(3): 220-226. |
LINS S, LIM C, XINM H, et al. Progress in antimicrobial mechanism of chitosan and its derivatives[J]. Chemistry, 2014, 77(3): 220-226. | |
52 | 李玮, 李明春, 辛梅华. 糠醛改性O-季铵化壳聚糖衍生物的合成及其抗菌性能[J]. 化工进展, 2014, 33(4): 966-970,987. |
LIW, LIM C, XINM H. Synthesis and antibacterial properties of furfural modified chitosan derivatives[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 966-970,987. | |
53 | 陈燕燕, 李明春, 辛梅华, 等. 海因改性N-季铵化壳聚糖衍生物的合成及其抗菌性能[J]. 化工进展, 2015, 34(1): 188-192,233. |
CHENY Y, LIM C, XINM H, et al. Synthesis and antibacterial research of hydantoin modified quaternary ammonium chitosan[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 188-192, 233. | |
54 | 俞娟, 徐俊华, 范一民. 壳聚糖抗菌性能研究进展[J]. 林业工程学报, 2018, 3(5): 20-27. |
YUJ, XUJ H, FANY M. A review of antibacterial properties of chitosan[J]. Journal of Forestry Engineering, 2018, 3(5): 20-27. | |
55 | MATSHETSHEK I, PARANIS, MANKIiS M, et al. Preparation, characterization and invitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil[J]. International Journal of Biological Macromolecules A, 2018, 118: 676-682. |
56 | HASHEMINEJADN, KHODAIYANF, SAFARIM. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles[J]. Food Chemistry, 2019, 275: 113-122. |
57 | EL-FEKYG S, SHARAFS S, SHAFEIA E, et al. Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing[J]. Carbohydrate Polymers, 2017, 158: 11-19. |
58 | ABDELKADERA, EL-MOKHTARM A, ABDELKADERO, et al. Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model[J]. Carbohydrate Polymers, 2017, 174: 1041-1050. |
59 | LIH X, ZHANGZ, BAOX Y, et al. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery[J]. Colloids and Surfaces B: Biointerfaces, 2018, 170: 136-143. |
60 | HIRPARAM R, MANIKKATHJ, SIVAKUMARK, et al. Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: development and in vitro and in vivo evaluations [J]. International Journal of Biological Macromolecules B, 2018, 107: 2190-2200. |
61 | MILADIK, SFARS, FESSIH, et al. Enhancement of alendronate encapsulation in chitosan nanoparticles[J]. Journal of Drug Delivery Science and Technology B, 2015, 30: 391-396. |
62 | LIUS S, YANGS L, HO P C. Intranasal administration of carbamazepineloaded carboxymethyl chitosan nanoparticles for drug delivery to the brain[J]. Asian Journal of Pharmaceutical Sciences, 2018, 13(1): 72-81. |
63 | 毛扬帆, 李明春, 辛梅华. O-磺化/O-季铵化-N,N-双烷基壳聚糖混合单分子膜及自组装囊泡性质[J]. 化工进展, 2015, 34(5): 1365-1370. |
MAOY F, LIM C, XINM H. Mixed monolayers and self-assembly vesicles of O-sulfonated-N,N-dilauryl chitosan/O-quaternized-N,N-dilauryl chitosan [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1365-1370. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[3] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[4] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[5] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[6] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[7] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[8] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[9] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[10] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[11] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[12] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[13] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[14] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[15] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |