Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 5048-5056.DOI: 10.16085/j.issn.1000-6613.2019-0707
• Materials science and technology • Previous Articles Next Articles
Jie OUYANG(),Wenxian ZHU,Xiaohui ZHANG,Huadong TANG,Rongbin HUANG()
Received:
2019-05-04
Online:
2019-11-05
Published:
2019-11-05
Contact:
Rongbin HUANG
通讯作者:
黄荣斌
作者简介:
欧阳杰(1993—)男,硕士研究生,研究方向为纳米金属催化。E-mail:基金资助:
CLC Number:
Jie OUYANG,Wenxian ZHU,Xiaohui ZHANG,Huadong TANG,Rongbin HUANG. Synthesis of hydrophobic palladium nanocluster and its application as a substrate for surface enhanced raman scattering[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5048-5056.
欧阳杰,朱文仙,张小会,唐华东,黄荣斌. 疏水性钯纳米团簇的合成及其作为表面增强拉曼散射基底的应用[J]. 化工进展, 2019, 38(11): 5048-5056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0707
1 | 徐国财. 纳米科技导论[M]. 北京: 高等教育出版社, 2005: 368. |
XUGuocai. Introduction to nanoscience and technology[M]. Beijing: High Education Press, 2005: 368. | |
2 | WANGF, NIUX, WANGW, et al. Green synthesis of Pd nanoparticles via extracted polysaccharide applied to glucose detection[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 87-93. |
3 | SUNX, ARIZAP, ORTIZM, et al. Long-term atomistic simulation of hydrogen absorption in palladium nanocubes using a diffusive molecular dynamics method[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5657-5667. |
4 | 李雪, 张伊放, 齐卫宏, 等. 纳米储氢合金[J]. 化学进展, 2013, 25(7): 1122-1130. |
LIXue, ZHANGYifang, QIWeihong, et al. Hydrogen storage nanoalloys[J]. Progress in Chemistry, 2013, 25(7): 1122-1130. | |
5 | PUGAZHENDHIA, SHOBANAS, NGUYEND D, et al. Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1431-1440. |
6 | FONTESE H, RAMOSC E D, NANDENHAJ, et al. Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium[J]. International Journal of Hydrogen Energy, 2018, 44(2): 937-951. |
7 | LIH, ZHANGY, WANQ, et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon, 2018, 131: 111-119. |
8 | 杨小勇, 钱浩. 高分子负载钯催化Suzuki反应的研究进展[J]. 化学工程与装备, 2013 (7): 144-149. |
YANGXiaoyong, QIANHao. Progress in suzuki reaction catalyzed by polymer-supported palladium[J]. Chemical Engineering & Equipment, 2013 (7): 144-149. | |
9 | 牛志强. 钯、铂纳米晶的调控合成与催化性能研究[D]. 北京: 清华大学, 2012. |
NIUZhiqiang. Controlled synthesis and catalytic study of palladium and platinum nanocrystals[D]. Beijing: Tsinghua University, 2012. | |
10 | REVATHYT A, DHANAVELS, SIVARANJANIT, et al. Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol[J]. Applied Surface Science, 2018, 449: 764-771. |
11 | AYESHA I, THAKERS, QAMHIEHN, et al. Size-controlled Pd nanocluster grown by plasma gas-condensation method[J]. Journal of Nanoparticle Research, 2011, 13(3): 1125-1131. |
12 | 郭志岩, 刘军刚, 杜芳林, 等. 氢电弧等离子体法制备纳米钯粒子及形成过程分析[J]. 青岛科技大学学报(自然科学版), 2005, 26(2): 140-142. |
GUOZhiyan, LIUJungang, DUFanglin, et al. Preparation and analysis of Pd nanoparticles by H2+He Arc plasma method[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2005, 26(2): 140-142. | |
13 | 赵宏宾, 熊国兴, BRUNNERH, 等. 应用等离子体溅射方法制备钯-银合金复合膜及其膜表征[J]. 中国科学, 1999, 29(2): 174-180. |
ZHAOHongbin, XIONGGuoxing, BRUNNERH, et al. Pd-Ag alloy composite films prepared by plasma sputtering and their characterization[J]. Scientia Sinica, 1999, 29(2): 174-180. | |
14 | 卫英慧. 纳米材料概论[M]. 北京: 化学工业出版社, 2009: 260. |
WEIYinghui. Introduction to nanomaterials[M]. Beijing: Chemical Industry Press, 2009: 260. | |
15 | AYMONIERC, BORTZMEYERD, THOMANNR, et al. Poly(methyl methacrylate)/palladium nanocomposites: synthesis and characterization of the morphological, thermomechanical, and thermal properties[J]. Chemistry of Materials, 2003, 15(25): 4874-4878. |
16 | MEHTAS K, GUPTAS. Time-efficient microwave synthesis of Pd nanoparticles and their electrocatalytic property in oxidation of formic acid and alcohols in alkaline media[J]. Journal of Applied Electrochemistry, 2011, 41(12): 1407-1417. |
17 | 王艳丽, 谭德新, 徐国财, 等. 不使用保护气氛和还原剂超声制备纳米钯颗粒[J]. 材料研究学报, 2007, 21(3): 329-332. |
WANGYanli, TANDexin, XUGuocai, et al. Sonochemical preparation of Pd nanoparticles without gas protection and reductant[J]. Chinese Journal of Materials Research, 2007, 21(3): 329-332. | |
18 | BASAKD, KARANS, MALLIKB. Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method[J]. Chemical Physics Letters, 2006, 420(1/2/3): 115-119. |
19 | ABYANEHM K, PASRICHAR, GOSAVIS W, et al. Thermally assisted semiconductor-like to insulator transition in gold–poly(methyl methacrylate) nanocomposites[J]. Nanotechnology, 2006, 17(16): 4129-4134. |
20 | CHANY N C, CRAIGG S W, SCHROCKR R, et al. Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers[J]. Chemistry of Materials, 1992, 4(1): 24-27. |
21 | NGUYENV L, NGUYEND C, HIRATAH, et al. Chemical synthesis and characterization of palladium nanoparticles[J]. Journal of Nuclear Materials, 2010, 383(3): 231-236. |
22 | NEMAMCHAA, REHSPRINGERJ L, KHATMID. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(Ⅱ) nitrate in aqueous solution[J]. The Journal of Physical Chemistry B, 2006, 110(1): 383-387. |
23 | ROY P S, BAGCHIJ, BHATTACHARYAS K. Size-controlled synthesis and characterization of polyvinyl alcohol coated palladium nanoparticles[J]. Transition Metal Chemistry, 2009, 34(4): 447-453. |
24 | NIUW X, ZHANGL, XUG B. Shape-controlled synthesis of single-crystalline palladium nanocrystals[J]. ACS Nano, 2010, 4(4): 1987-1996. |
25 | JAMESC. The preparation of palladium nanoparticles[J]. Platinum Metals Review, 2012, 56(2): 83-98. |
26 | MEHTAS K, GUPTAS. Time-efficient microwave synthesis of Pd nanoparticles and their electrocatalytic property in oxidation of formic acid and alcohols in alkaline media[J]. Journal of Applied Electrochemistry, 2011, 41(12): 1407-1417. |
27 | 张明波. 等离子体处理炭载贵金属催化剂及其应用[D]. 天津: 天津大学, 2008. |
ZHANGMingbo. Plasma treated carbon supported noble metal catalyst and its application[D]. Tianjin: Tianjin University, 2008. | |
28 | 纪镁铃, 王惠璇, 洪露薇, 等. 生物还原法制备Pd/TiO2光催化剂[J]. 化学反应工程与工艺, 2008, 24(5): 400-404. |
JIMeiling, WANGHuixuan, HONGLuwei, et al. Preparation of Pd/TiO2 photocatalysts by a bioreduction method[J]. Chemical Reaction Engineering And Technology, 2008, 24(5): 400-404. | |
29 | FLEISCHMANNM, HENDRAP J, MCQUILLANA J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166. |
30 | JEANMAIRED L, DUYNER P V, JEANMAIRED L, et al. Surface raman spectroelectrochemistry: Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1977, 84(1): 1-20. |
31 | LUL Q, ZHENGY, QUW G, et al. Hydrophobic teflon films as concentrators for single-molecule SERS detection[J]. Journal of Materials Chemistry, 2012, 22(39): 20986-20990. |
32 | TIANZ Q, RENB. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 2004, 55(1): 197-229. |
33 | XIONGY, MCLELLANJ M, CHENJ, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties[J]. Journal of the American Chemical Society, 2005, 127(48): 17118-17127. |
34 | HUJ, FENGX, LIUY, et al. Shape-controlled synthesis and application in surface-enhanced Raman scattering of novel palladium nanoparticles[J]. Materials Letters, 2010, 64(3): 422-424. |
35 | DINGS Y, YIJ, LIJ F, et al. Erratum: nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1: 16021. |
36 | 赵万利, 王贺陶, 刘琨, 等. 基于“热点”效应的表面增强拉曼散射光谱研究[J]. 光散射学报, 2008, 20(1): 13-16. |
ZHAOWanli, WANGHetao, LIUKun, et al. Surface-enhanced raman spectrum based on the “hot-spots” effect[J]. The Journal of Light Scattering, 2008, 20(1): 13-16. | |
37 | CHENH Y, LINM H, WANGC Y, et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale[J]. Journal of the American Chemical Society, 2016, 137(42): 13698-13705. |
38 | NIE, S, EMORYS R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106. |
39 | 孙丽枝, 易清风, 刘小平, 等. 钯纳米颗粒的制备及对乙醇氧化的电活性[J]. 化工新型材料, 2013, 41(8): 56-58. |
SUNLizhi, YIQingfeng, LIUXiaoping, et al. Preparation of palladium nanoparticles[J]. New Chemical Materials, 2013, 41(8): 56-58. | |
40 | 杨有铭, 阮伟东, 宋薇, 等. 表面增强拉曼光谱检测联苯胺[J]. 高等学校化学学报, 2012, 33(10): 2191-2194. |
YANGYouming, RUANWeidong, SONGWei, et al. Trace benzidine detection by surface enhanced Raman spectroscopy[J]. Chemical Journal of Chinese Universities, 2012, 33(10): 2191-2194. | |
41 | ONCHOKEK K, HADADC M, DUTTAP K. Structure and vibrational spectra of mononitrated benzo(a)pyrenes[J]. Journal of Physical Chemistry A, 2006, 110(1): 76-84. |
42 | 韩颖, 郭明, 魏艳玲, 等. 苯并(a)芘的拉曼光谱计算及分析[J]. 吉林化工学院学报, 2012, 29(7): 9-12. |
HANYing, GUOMing, WEIYanling, et al. Calculation and analysis for Raman spectroscopy of benzo(a)pyrene[J]. Journal of Jilin Institute of Chemical Technology, 2012, 29(7): 9-12. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[5] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[6] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[7] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[8] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[9] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[10] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[11] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[12] | LI Ling, MA Chaofeng, LU Chunshan, YU Wanjin, SHI Nengfu, JIN Jiamin, ZHANG Jianjun, LIU Wucan, LI Xiaonian. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. |
[13] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[14] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[15] | ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, WANG Tao, FENG Yingnan, REN Yongsheng, ZHAO Zhiping. Research progress on microporous supporting substrate of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |