Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4264-4274.DOI: 10.16085/j.issn.1000-6613.2022-1832
• Industrial catalysis • Previous Articles Next Articles
LI Runlei1(), WANG Ziyan2, WANG Zhimiao1(), LI Fang1(), XUE Wei1, ZHAO Xinqiang1, WANG Yanji1
Received:
2022-09-30
Revised:
2023-02-04
Online:
2023-09-19
Published:
2023-08-15
Contact:
WANG Zhimiao, LI Fang
李润蕾1(), 王子彦2, 王志苗1(), 李芳1(), 薛伟1, 赵新强1, 王延吉1
通讯作者:
王志苗,李芳
作者简介:
李润蕾(1999—),男,硕士研究生,研究方向为绿色催化。E-mail:L530912@163.com。
基金资助:
CLC Number:
LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274.
李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1832
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
10% | 20% | 30% | 40% | ||
1 | CeO2晶粒尺寸/nm | 4.8 | 5.4 | 6.8 | 7.0 |
2 | CeO2晶格常数/nm | 0.5406 | 0.5400 | 0.5381 | 0.5389 |
3 | SBET/m2·g-1 | 52.2 | 52.5 | 55.6 | 54.1 |
4 | 平均孔容/cm3·g-1 | 0.26 | 0.21 | 0.20 | 0.18 |
5 | 平均孔径/nm | 15.5 | 14.4 | 11.0 | 10.4 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 15.7 | 17.7 | 18.9 | 14.9 |
7 | (Isat/Ipp)/% | 30.4 | 29.3 | 27.6 | 29.0 |
8 | [Oads/(Oads+Olatt)]/% | 15.1 | 17.4 | 26.6 | 19.6 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
10% | 20% | 30% | 40% | ||
1 | CeO2晶粒尺寸/nm | 4.8 | 5.4 | 6.8 | 7.0 |
2 | CeO2晶格常数/nm | 0.5406 | 0.5400 | 0.5381 | 0.5389 |
3 | SBET/m2·g-1 | 52.2 | 52.5 | 55.6 | 54.1 |
4 | 平均孔容/cm3·g-1 | 0.26 | 0.21 | 0.20 | 0.18 |
5 | 平均孔径/nm | 15.5 | 14.4 | 11.0 | 10.4 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 15.7 | 17.7 | 18.9 | 14.9 |
7 | (Isat/Ipp)/% | 30.4 | 29.3 | 27.6 | 29.0 |
8 | [Oads/(Oads+Olatt)]/% | 15.1 | 17.4 | 26.6 | 19.6 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
300℃ | 400℃ | 500℃ | 600℃ | ||
1 | CeO2晶粒尺寸/nm | 6.7 | 7.2 | 6.8 | 9.1 |
2 | CeO2晶格常数/nm | 0.5399 | 0.5398 | 0.5381 | 0.5376 |
3 | SBET/m2·g-1 | 75.5 | 69.8 | 55.6 | 34.0 |
4 | 平均孔容/cm3·g-1 | 0.20 | 0.20 | 0.20 | 0.19 |
5 | 平均孔径/nm | 9.2 | 9.0 | 11.0 | 17.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 19.4 | 18.7 | 18.9 | 18.6 |
7 | (Isat/Ipp)/% | 29.1 | 30.1 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.0 | 21.9 | 26.6 | 19.8 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
300℃ | 400℃ | 500℃ | 600℃ | ||
1 | CeO2晶粒尺寸/nm | 6.7 | 7.2 | 6.8 | 9.1 |
2 | CeO2晶格常数/nm | 0.5399 | 0.5398 | 0.5381 | 0.5376 |
3 | SBET/m2·g-1 | 75.5 | 69.8 | 55.6 | 34.0 |
4 | 平均孔容/cm3·g-1 | 0.20 | 0.20 | 0.20 | 0.19 |
5 | 平均孔径/nm | 9.2 | 9.0 | 11.0 | 17.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 19.4 | 18.7 | 18.9 | 18.6 |
7 | (Isat/Ipp)/% | 29.1 | 30.1 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.0 | 21.9 | 26.6 | 19.8 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
nCe/nCu=1.2 | nCe/nCu=1.4 | nCe/nCu=1.6 | nCe/nCu=1.8 | ||
1 | CeO2晶粒尺寸/nm | 5.9 | 6.3 | 6.8 | 6.7 |
2 | CeO2晶格常数/nm | 0.5389 | 0.5387 | 0.5381 | 0.5382 |
3 | SBET/m2·g-1 | 45.4 | 55.4 | 55.6 | 54.2 |
4 | 平均孔容/cm3·g-1 | 0.17 | 0.19 | 0.20 | 0.20 |
5 | 平均孔径/nm | 13.8 | 10.9 | 11.0 | 10.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 17.0 | 17.6 | 18.9 | 17.9 |
7 | (Isat/Ipp)/% | 30.6 | 27.9 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.9 | 19.2 | 26.6 | 18.6 |
编号 | 催化剂参数 | 数值 | |||
---|---|---|---|---|---|
nCe/nCu=1.2 | nCe/nCu=1.4 | nCe/nCu=1.6 | nCe/nCu=1.8 | ||
1 | CeO2晶粒尺寸/nm | 5.9 | 6.3 | 6.8 | 6.7 |
2 | CeO2晶格常数/nm | 0.5389 | 0.5387 | 0.5381 | 0.5382 |
3 | SBET/m2·g-1 | 45.4 | 55.4 | 55.6 | 54.2 |
4 | 平均孔容/cm3·g-1 | 0.17 | 0.19 | 0.20 | 0.20 |
5 | 平均孔径/nm | 13.8 | 10.9 | 11.0 | 10.8 |
6 | [Ce3+/(Ce3++Ce4+)]/% | 17.0 | 17.6 | 18.9 | 17.9 |
7 | (Isat/Ipp)/% | 30.6 | 27.9 | 27.6 | 29.5 |
8 | [Oads/(Oads+Olatt)]/% | 21.9 | 19.2 | 26.6 | 18.6 |
催化剂 | 原料气组成及体积分数 | 空速/mL·g-1·h-1 | T/℃ | CO转化率/% | 参考文献 |
---|---|---|---|---|---|
CuO-CeO2/TiO2 | 1% CO, 9% O2, N2 | 24000 | 90 | 100 | 本文 |
Pt/Cr1.3Fe0.7O3 | 1% CO, 1% O2, N2 | 120000 | 80 | 78.8 | [ |
Ag/CeO2 | 0.2% CO, 1% O2, N2 | 240000 | 230 | 50 | [ |
Au-CeO2 | 0.05%~1% CO, 10%O2, He | 2650 | 25 | 100 | [ |
Mn3O4/CeO2 | 1%CO, 4% O2, He | 60000 | 194 | 90 | [ |
CuO-CeO2/UiO-66 | 1% CO, 3% O2, N2 | 24000 | 160 | 99 | [ |
Co3O4 NAs-6 | 1% CO, 20% O2, N2 | 10000h-1 | 150 | 100 | [ |
NiO/CeO2 | 0.6% CO, 1.5% O2, Ar | 60000 | 200 | 99.2 | [ |
CuO-CeO2/C | 1% CO, 21% O2, He | 45000h-1 | 150 | 100 | [ |
Au-CeO2/SiO2 | 1% CO, 干空气 | 12000 | 210 | 100 | [ |
CuaCebFec-PSF | 180mL/m3 CO, 空气 | 7643h-1 | 200 | 100 | [ |
Cu1/MnO2 | 1% CO, 15% O2, He | 34000 | 80 | 90 | [ |
CoMn-a | 2% CO, 20% O2, Ar | 60000 | 125 | 100 | [ |
NiO-CuO | 2% CO, 5% O2, Ar | 60000 | 138 | 100 | [ |
CuO/CeO2-20 | 0.4% CO, 空气 | 8000 | 110 | 100 | [ |
催化剂 | 原料气组成及体积分数 | 空速/mL·g-1·h-1 | T/℃ | CO转化率/% | 参考文献 |
---|---|---|---|---|---|
CuO-CeO2/TiO2 | 1% CO, 9% O2, N2 | 24000 | 90 | 100 | 本文 |
Pt/Cr1.3Fe0.7O3 | 1% CO, 1% O2, N2 | 120000 | 80 | 78.8 | [ |
Ag/CeO2 | 0.2% CO, 1% O2, N2 | 240000 | 230 | 50 | [ |
Au-CeO2 | 0.05%~1% CO, 10%O2, He | 2650 | 25 | 100 | [ |
Mn3O4/CeO2 | 1%CO, 4% O2, He | 60000 | 194 | 90 | [ |
CuO-CeO2/UiO-66 | 1% CO, 3% O2, N2 | 24000 | 160 | 99 | [ |
Co3O4 NAs-6 | 1% CO, 20% O2, N2 | 10000h-1 | 150 | 100 | [ |
NiO/CeO2 | 0.6% CO, 1.5% O2, Ar | 60000 | 200 | 99.2 | [ |
CuO-CeO2/C | 1% CO, 21% O2, He | 45000h-1 | 150 | 100 | [ |
Au-CeO2/SiO2 | 1% CO, 干空气 | 12000 | 210 | 100 | [ |
CuaCebFec-PSF | 180mL/m3 CO, 空气 | 7643h-1 | 200 | 100 | [ |
Cu1/MnO2 | 1% CO, 15% O2, He | 34000 | 80 | 90 | [ |
CoMn-a | 2% CO, 20% O2, Ar | 60000 | 125 | 100 | [ |
NiO-CuO | 2% CO, 5% O2, Ar | 60000 | 138 | 100 | [ |
CuO/CeO2-20 | 0.4% CO, 空气 | 8000 | 110 | 100 | [ |
1 | 金星, 罗永明, 梅占强, 等. CO催化氧化催化剂改性研究进展[J]. 石油化工, 2019, 48(2): 197-202. |
JIN Xing, LUO Yongming, MEI Zhanqiang, et al. Research progress on modification of catalytic oxidation catalyst for CO[J]. Petrochemical Technology, 2019, 48(2): 197-202. | |
2 | 杨德强, 周庆华. CO低温氧化催化剂研究进展[J]. 化学工程师, 2011, 25(8): 36-38. |
YANG Deqiang, ZHOU Qinghua. Research progress of low-temperature CO oxidation catalysts[J]. Chemical Engineer, 2011, 25(8): 36-38. | |
3 | 梁飞雪, 朱华青, 秦张峰, 等. 一氧化碳低温催化氧化[J]. 化学进展, 2008, 20(10): 1453-1464. |
LIANG Feixue, ZHU Huaqing, QIN Zhangfeng, et al. Low-temperature catalytic oxidation of carbon monoxide[J]. Progress in Chemistry, 2008, 20(10): 1453-1464. | |
4 | YANG N, PATTISSON S, DOUTHWAITE M, et al. Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation[J]. ACS Catalysis, 2021, 11(18): 11607-11615. |
5 | LU Rao, HE Lei, WANG Yang, et al. Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation[J]. Chinese Journal of Catalysis, 2020, 41(2): 350-356. |
6 | VALECHHA D, MEGARAJAN S K, AL-FATESH A, et al. Low temperature CO oxidation over a novel nano-structured, mesoporous CeO2 supported Au catalyst[J]. Catalysis Letters, 2019, 149(1): 127-140. |
7 | 孟甜甜, 赵世超, 陈朝秋, 等. 原子层沉积制备Pt/CeO2催化剂及其低温CO氧化性能的研究[J]. 现代化工, 2020, 40(10): 184-187. |
MENG Tiantian, ZHAO Shichao, CHEN Chaoqiu, et al. Preparation of Pt/CeO2 catalyst via atomic layer deposition and its application in oxidation of CO at low temperature[J]. Modern Chemical Industry, 2020, 40(10): 184-187. | |
8 | 黄志超, 王际童, 马成, 等. 低负载Pd/Al2O3催化剂的制备及其对CO室温催化性能研究[J]. 工业催化,2021, 29(2): 33-41. |
HUANG Zhichao, WANG Jitong, MA Cheng, et al. Preparation of Pd/Al2O3 catalyst with low Pd loading amount for CO oxidation at room temperature[J]. Industrial Catalysis, 2021, 29(2): 33-41. | |
9 | DEY S, CHANDRA DHAL G. Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter[J]. Materials Today Chemistry, 2020, 17: 100282. |
10 | ZOU Zhiqiang, MENG Ming, GUO Lihong, et al. Synthesis and characterization of CuO/Ce1- x Ti x O2 catalysts used for low-temperature CO oxidation[J]. Journal of Hazardous Materials, 2009, 163(2/3): 835-842. |
11 | GAO Zhiming, GONG Yuanyuan, ZHANG Qiang, et al. Preferential oxidation of CO in excess H2 over the CeO2/CuO catalyst: Effect of initial support[J]. Journal of Energy Chemistry, 2014, 23(4): 475-482. |
12 | WANG Cheng, CHENG Qingpeng, WANG Xinlei, et al. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Applied Surface Science, 2017, 422: 932-943. |
13 | MOBINI S, MESHKANI F, REZAEI M. Supported Mn catalysts and the role of different supports in the catalytic oxidation of carbon monoxide[J]. Chemical Engineering Science, 2019, 197: 37-51. |
14 | LUO Jingjie, CHU Wei, XU Huiyuan, et al. Low-temperature CO oxidation over CuO-CeO2/SiO2 catalysts: Effect of CeO2 content and carrier porosity[J]. Journal of Natural Gas Chemistry, 2010, 19(4): 355-361. |
15 | QI Lei, YU Qiang, DAI Yue, et al. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation[J]. Applied Catalysis B: Environmental, 2012, 119/120: 308-320. |
16 | SEDMAK G, HOČEVAR S, LEVEC J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2- y catalyst[J]. Journal of Catalysis, 2003, 213(2): 135-150. |
17 | MARTÍNEZ-ARIAS A, HUNGRÍA A B, MUNUERA G, et al. Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream[J]. Applied Catalysis B: Environmental, 2006, 65(3/4): 207-216. |
18 | JIA Aiping, JIANG Shiyu, LU Jiqing, et al. Study of catalytic activity at the CuO-CeO2 interface for CO oxidation[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21605-21610. |
19 | LIU Zhigang, ZHOU Renxian, ZHENG Xiaoming. Influence of preparation methods on CuO-CeO2 catalysts in the preferential oxidation of CO in excess hydrogen[J]. Journal of Natural Gas Chemistry, 2008, 17(2): 125-129. |
20 | 孙敬方, 张雷, 葛成艳, 等. 固相浸渍法和湿浸渍法制备CuO/CeO2催化剂及其CO氧化性能的对比研究[J]. 催化学报, 2014, 35(8): 1347-1358. |
SUN Jingfang, ZHANG Lei, GE Chengyan, et al. Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation[J]. Chinese Journal of Catalysis, 2014, 35(8): 1347-1358. | |
21 | ZHANG Fang, CHEN Chao, XIAO Weiming, et al. CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal-organic framework precursor for preferential CO oxidation[J]. Catalysis Communications, 2012, 26: 25-29. |
22 | ZHU Chunlan, DING Tong, GAO Wanxian, et al. CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17457-17465. |
23 | ZAMARO J M, PÉREZ N C, MIRÓ E E, et al. HKUST-1 MOF: A matrix to synthesize CuO and CuO-CeO2 nanoparticle catalysts for CO oxidation[J]. Chemical Engineering Journal, 2012, 195/196: 180-187. |
24 | CHEN Chao, WANG Rui, SHEN Pan, et al. Inverse CeO2/CuO catalysts prepared from heterobimetallic metal-organic framework precursor for preferential CO oxidation in H2-rich stream[J]. International Journal of Hydrogen Energy, 2015, 40(14): 4830-4839. |
25 | GONG Xia, WANG Weiwei, FU Xinpu, et al. Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide[J]. Fuel, 2018, 229: 217-226. |
26 | WANG Yin, YANG Yiqiang, LIU Ning, et al. Sword-like CuO/CeO2 composites derived from a Ce-BTC metal-organic framework with superior CO oxidation performance[J]. RSC Advances, 2018, 8(58): 33096-33102. |
27 | GU Chunlei, QI Ran, WEI Ying, et al. Preparation and performances of nanorod-like inverse CeO2-CuO catalysts derived from Ce-1,3,5-benzene tricarboxylic acid for CO preferential oxidation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 651-667. |
28 | HUANG Jing, WANG Shurong, ZHAO Yingqiang, et al. Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation[J]. Catalysis Communications, 2006, 7(12): 1029-1034. |
29 | 梁飞雪, 朱华青, 秦张峰, 等. CeO2-TiO2复合氧化物的制备、表征及其对CO氧化的催化性能[J]. 催化学报, 2008, 29(3): 264-268. |
LIANG Feixue, ZHU Huaqing, QIN Zhangfeng, et al. Preparation and characterization of CeO2-TiO2 composite oxide and its catalytic performance for CO oxidation[J]. Chinese Journal of Catalysis, 2008, 29(3): 264-268. | |
30 | LI Hailong, WU Shaokang, LI Liqing, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catalysis Science & Technology, 2015, 5(12): 5129-5138. |
31 | ASTUDILLO J, ÁGUILA G, DÍAZ F, et al. Study of CuO-CeO2 catalysts supported on SiO2 on the low-temperature oxidation of CO[J]. Applied Catalysis A: General, 2010, 381(1/2): 169-176. |
32 | REDDY B M, KHAN A, YAMADA Y, et al. Structural characterization of CeO2-MO2 (M = Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques[J]. The Journal of Physical Chemistry B, 2003, 107(41): 11475-11484. |
33 | DENG Changshun, LI Bin, DONG Lihui, et al. NO reduction by CO over CuO supported on CeO2-doped TiO2: The effect of the amount of a few CeO2 [J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(24): 16092-16109. |
34 | ZHOU Renxian, JIANG Xiaoyuan, MAO Jianxin, et al. Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides[J]. Applied Catalysis A: General, 1997, 162(1/2): 213-222. |
35 | AGUILA G, GUERRERO S, ARAYA P. Effect of the preparation method and calcination temperature on the oxidation activity of CO at low temperature on CuO-CeO2/SiO2 catalysts[J]. Applied Catalysis A: General, 2013, 462/463: 56-63. |
36 | XIE Yu, WU Jinfang, JING Guojuan, et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes[J]. Applied Catalysis B: Environmental, 2018, 239: 665-676. |
37 | GUO Xiaolin, LI Jing, ZHOU Renxian. Catalytic performance of Manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas[J]. Fuel, 2016, 163: 56-64. |
38 | JAMPA S, WANGKAWEE K, TANTISRIYANURAK S, et al. High performance and stability of copper loading on mesoporous ceria catalyst for preferential oxidation of CO in presence of excess of hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(8): 5537-5548. |
39 | ALI S, CHEN L Q, YUAN F L, et al. Synergistic effect between copper and cerium on the performance of Cu x Ce0.5- x Zr0.5 (x = 0.1~0.5) oxides catalysts for selective catalytic reduction of NO with ammonia[J]. Applied Catalysis B: Environmental, 2017, 210: 223-234. |
40 | WEN Bin, HE Mingyuan. Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O and SO2 in FCC operation[J]. Applied Catalysis B: Environmental, 2002, 37(1): 75-82. |
41 | ZENG Lei, SONG Wulin, LI Minghui, et al. Catalytic oxidation of formaldehyde on surface of HTiO2/HCTiO2 without light illumination at room temperature[J]. Applied Catalysis B: Environmental, 2014, 147: 490-498. |
42 | YANG Shaoxia, ZHU Wanpeng, JIANG Zhanpeng, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. |
43 | WANG Ting, XING Jinyuan, ZHU Li, et al. CO oxidation over supported Pt/Cr x Fe2- x O3 catalysts and their good tolerance to CO2 and H2O[J]. Applied Catalysis B: Environmental, 2019, 245: 314-324. |
44 | KIBIS L S, SVINTSITSKIY D A, KARDASH T Y, et al. Interface interactions and CO oxidation activity of Ag/CeO2 catalysts: A new approach using model catalytic systems[J]. Applied Catalysis A: General, 2019, 570: 51-61. |
45 | JAMPAIAH D, VELISOJU V K, DEVAIAH D, et al. Flower-like Mn3O4/CeO2 microspheres as an efficient catalyst for diesel soot and CO oxidation: Synergistic effects for enhanced catalytic performance[J]. Applied Surface Science, 2019, 473: 209-221. |
46 | YU Jihang, YU Jun, WEI Zhecheng, et al. Preparation and characterization of UiO-66-supported Cu-Ce bimetal catalysts for low-temperature CO oxidation[J]. Catalysis Letters, 2019, 149(2): 496-506. |
47 | MO Shengpeng, HE Hui, REN Quanming, et al. Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation[J]. Journal of Environmental Sciences, 2019, 75: 136-144. |
48 | 金石山, 张大山, 冯旭浩, 等. Ni含量对NiO/CeO2催化剂催化CO氧化性能的影响[J]. 燃料化学学报, 2022, 50(8): 1034-1040. |
JIN Shishan, ZHANG Dashan, FENG Xuhao, et al. Effect of Ni content on catalytic oxidation of CO over NiO/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1034-1040. | |
49 | DEREKAYA F, ARASAN N, GÜLDÜR Ç. Effects of preparation method on the characterization and CO oxidation activities of the carbon-supported CuO-CeO2 catalysts[J]. Arabian Journal for Science and Engineering, 2022, 47(5): 6033-6047. |
50 | QIAN Kun, Shanshan LYU, XIAO Xiaoyan, et al. Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2009, 306(1/2): 40-47. |
51 | CHEN Longwen, ZHANG Dong, CHEN Yanwu, et al. Porous stainless-steel fibers supported CuCeFeO x /zeolite catalysts for the enhanced CO oxidation: Experimental and kinetic studies[J]. Chemosphere, 2022, 291: 132778. |
52 | JIANG Mingzhu, CHEN Jing, GAO Yanxia, et al. Using the interaction between copper and manganese to stabilize copper single-atom for CO oxidation[J]. Chemistry, 2021, 27(35): 9060-9070. |
53 | MOBINI S, REZAEI M, MESHKANI F. One-pot hard template synthesis of mesoporous spinel nanoparticles as efficient catalysts for low temperature CO oxidation[J]. Environmental Science and Pollution Research, 2021, 28(1): 547-563. |
54 | RASTEGARPANAH A, LIU Y X, DENG J G, et al. Influence of preparation method on catalytic performance of three-dimensionally ordered macroporous NiO-CuO for CO oxidation[J]. Journal of Solid State Chemistry, 2021, 297: 122091. |
55 | CAM T S, OMAROV S O, CHEBANENKO M I, et al. One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: The effect of CuO loading[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105373. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |