1 |
WANG Jing, HU Jing, NIU Siqi, et al. Crystalline-amorphous Ni2P4O12/NiMoO x nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction[J]. Small, 2022, 18(10): 2105972.
|
2 |
何杨华, 徐金铭, 王发楠, 等. Ni-Fe 基析氧阳极材料的研究进展[J]. 化工进展, 2016, 35(7): 2057-2062.
|
|
HE Yanghua, XU Jinming, WANG Fanan, et al. Recent advances in Ni-Fe-based electrocatalysts for oxygen evolution reaction[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2057-2062.
|
3 |
WU Xianhong, ZHOU Si, WANG Zhiyu, et al. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater[J]. Advanced Energy Materials, 2019, 9(34): 1901333.
|
4 |
赵娟, 吴梦成, 雷惊雷, 等. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
|
|
ZHAO Juan, WU Mengcheng, LEI Jinglei, et al. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis[J]. CIESC Journal, 2022, 73(4): 1575-1584.
|
5 |
Sayed El-REFAEI, RUSSO Patrícia, PINNA Nicola. Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22077-22097.
|
6 |
YANG Hongyuan, DRIESS Matthias, MENEZES Prashanth. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials, 2021, 11(39): 2102074.
|
7 |
LI Weimo, WANG Ce, LU Xiaofeng. Integrated transition metal and compounds with carbon nanomaterials for electrochemistry water splitting[J]. Journal of Materials Chemistry A, 2021, 9: 3786-3827.
|
8 |
WANG Yu, JIAO Yanqing, YAN Haijing, et al. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting[J]. Angewandte Chemie International Edition, 2022, 61(12): e202116233.
|
9 |
ZHANG Bing, SHAN Jiongwei, WANG Weilong, et al. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting[J]. Small, 2022, 18(12): 2106012.
|
10 |
LIU Jianyun, LIU Xuan, SHI Hao, et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting[J]. Applied Catalysis B: Environmental, 2022, 302: 120862.
|
11 |
DIAO Fangyuan, HUANG Wei, CTISTIS Georgios, et al. Bifunctional and self-supported NiFeP-Layer-Coated NiP rods for electrochemical water splitting in alkaline solution[J]. ACS Applied Materials Interfaces, 2021, 13(20): 23702-23713.
|
12 |
GUAN Cao, XIAO Wen, WU Haijun, et al. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting[J]. Nano Energy, 2018, 48: 73-80.
|
13 |
ZHOU Meng, SUN Qiangqiang, SHEN Yuquian, et al. Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 306(20): 651-659.
|
14 |
YANG Lei, LIU Ruiming, JIAO Lifang. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting[J]. Advanced Functional Materials, 2020, 30(14): 1909618.
|
15 |
KIM Junhyeong, KIM Hyunki, KIM SOO-Kil, et al. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6: 6282-6288.
|
16 |
QIAN Guangfu, CHEN Jinli, YU Tianqi, et al. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Letters, 2021, 13: 77.
|
17 |
HAO Weiju, HUANG Hao, CHEN Ziliang, et al. Electroless plating-induced morphology self-assembly of free-standing Co-P-B enabling efficient overall water splitting[J]. Electrochimica Acta, 2020, 354(10): 136645.
|
18 |
LIU Huixiang, LI Xuanyang, CHEN Lulu, et al. Monolithic Ni-Mo-B bifunctional electrode for large current water splitting[J]. Advanced Functional Materials, 2022, 32(4): 2107308.
|
19 |
吴诗德, 张桂伟, 黄思光, 等. Ni-NiO/N-C的制备及其电解水析氢性能[J]. 复合材料学报, 2022, 39(4): 1667-1677.
|
|
WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677.
|
20 |
WANG Kaihang, SUN Kaili, YU Tianpeng, et al. Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7: 2518-2523.
|
21 |
ZHANG Lijie, JANG Haeseong, LIU Huihui, et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst[J]. Angewandte Chemie International Edition, 2021, 60(34): 18821-18829.
|
22 |
ZHAI Zhangjie, LI Chao, ZHANG Lei, et al. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting[J]. Journal of Materials Chemistry A, 2018, 6: 9833-9838.
|
23 |
LUO Yuting, ZHANG Zhiyuan, YANG Fengning, et al. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media[J]. Energy & Environmental Science, 2021, 14: 4610-4619.
|
24 |
LI Di, LI Zengyong, ZOU Ren, et al. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density[J]. Applied Catalysis B: Environmental, 2022, 307: 121170.
|
25 |
兰高力, 葛性波, 梁梓灏. 电化学刻蚀制备表面纳米多孔NiMoCu电解水析氢催化剂[J]. 化工新型材料, 2022, 50(4): 202-207.
|
|
LAN Gaoli, GE Xingbo, LIANG Zihao. Surface nanoporous NiMoCu electrode material prepared by electrochemical dealloying for hydrogen evolution[J]. New Chemical Materials, 2022, 50(4): 202-207.
|
26 |
ZHAI Panlong, ZHANG Yanxue, WU Yunzhen, et al. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting[J]. Nature Communications, 2020, 11:5462.
|
27 |
CHE Qijun, LI Qing, YAN Ya, et al. One-step controllable synthesis of amorphous (Ni-Fe)S x /NiFe(OH) y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density[J]. Applied Catalysis B: Environmental, 2019, 246(5): 337-348.
|