Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4283-4295.DOI: 10.16085/j.issn.1000-6613.2022-2071
• Industrial catalysis • Previous Articles Next Articles
WANG Xiaohan1(), ZHOU Yasong1(), YU Zhiqing1, WEI Qiang1, SUN Jinxiao1, JIANG Peng2
Received:
2022-11-07
Revised:
2023-01-11
Online:
2023-09-19
Published:
2023-08-15
Contact:
ZHOU Yasong
王晓晗1(), 周亚松1(), 于志庆1, 魏强1, 孙劲晓1, 姜鹏2
通讯作者:
周亚松
作者简介:
王晓晗(1992—),女,博士研究生,研究方向为石油与天然气加工。E-mail:wangxiaohan1906@163.com。
基金资助:
CLC Number:
WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295.
王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2071
样品 | 硅铝比① | 相对结晶度②/% | 晶粒尺寸/nm | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm | 酸量③/μmol·g-1 |
---|---|---|---|---|---|---|---|
Yr | 4.7 | 100 | 2208 | 444 | 0.25 | 2.1 | 741 |
Y1 | 4.9 | 80 | 515 | 506 | 0.34 | 2.8 | 643 |
Y2 | 5.0 | 91 | 317 | 548 | 0.38 | 3.3 | 617 |
Y3 | 5.2 | 97 | 220 | 575 | 0.42 | 4.4 | 580 |
样品 | 硅铝比① | 相对结晶度②/% | 晶粒尺寸/nm | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm | 酸量③/μmol·g-1 |
---|---|---|---|---|---|---|---|
Yr | 4.7 | 100 | 2208 | 444 | 0.25 | 2.1 | 741 |
Y1 | 4.9 | 80 | 515 | 506 | 0.34 | 2.8 | 643 |
Y2 | 5.0 | 91 | 317 | 548 | 0.38 | 3.3 | 617 |
Y3 | 5.2 | 97 | 220 | 575 | 0.42 | 4.4 | 580 |
催化剂 | 平均WS2长度/nm | 平均WS2堆积数 | fw |
---|---|---|---|
NiW/(Yr+ASA) | 5.64 | 1.86 | 0.15 |
NiW/(Y1+ASA) | 5.01 | 2.15 | 0.17 |
NiW/(Y2+ASA) | 4.64 | 2.48 | 0.20 |
NiW/(Y3+ASA) | 4.48 | 2.57 | 0.21 |
催化剂 | 平均WS2长度/nm | 平均WS2堆积数 | fw |
---|---|---|---|
NiW/(Yr+ASA) | 5.64 | 1.86 | 0.15 |
NiW/(Y1+ASA) | 5.01 | 2.15 | 0.17 |
NiW/(Y2+ASA) | 4.64 | 2.48 | 0.20 |
NiW/(Y3+ASA) | 4.48 | 2.57 | 0.21 |
催化剂 | WS2/% | WO x S y /% | WO3/% | Ni硫化程度/% | NiWS/% | Ni x S y /% | NiO/% |
---|---|---|---|---|---|---|---|
NiW/(Yr+ASA) | 30.9 | 2.7 | 46.4 | 42.8 | 31.5 | 11.3 | 57.2 |
NiW/(Y1+ASA) | 38.1 | 20.2 | 41.7 | 46.2 | 33.3 | 12.9 | 53.8 |
NiW/(Y2+ASA) | 41.8 | 19.2 | 38.9 | 49.0 | 35.0 | 14.0 | 50.5 |
NiW/(Y3+ASA) | 46.1 | 16.1 | 37.8 | 52.1 | 36.2 | 15.9 | 47.9 |
催化剂 | WS2/% | WO x S y /% | WO3/% | Ni硫化程度/% | NiWS/% | Ni x S y /% | NiO/% |
---|---|---|---|---|---|---|---|
NiW/(Yr+ASA) | 30.9 | 2.7 | 46.4 | 42.8 | 31.5 | 11.3 | 57.2 |
NiW/(Y1+ASA) | 38.1 | 20.2 | 41.7 | 46.2 | 33.3 | 12.9 | 53.8 |
NiW/(Y2+ASA) | 41.8 | 19.2 | 38.9 | 49.0 | 35.0 | 14.0 | 50.5 |
NiW/(Y3+ASA) | 46.1 | 16.1 | 37.8 | 52.1 | 36.2 | 15.9 | 47.9 |
1 | FENG Weiwei, ZHENG Bin, CUI Qingyan, et al. Influence of ASA composition on its supported Mo catalyst performance for the slurry-phase hydrocracking of vacuum residue[J]. Fuel, 2022, 324: 124628. |
2 | 胡永康, 葛在贵, 丁连会, 等. 高活性中油型加氢裂化催化剂3903的性能及工业应用[J]. 炼油设计, 1995, 25(2): 1-5, 10. |
HU Yongkang, GE Zaigui, DING Lianhui, et al. Characteristics and commercial application of high activity catalyst for mid-barrel hydrocracking[J]. Petroleum Refinery Engineering, 1995, 25(2): 1-5, 10. | |
3 | BROWNING Barbara E, PITAULT Isabelle, COUENNE Francoise, et al. Effects of bifunctional catalyst geometry on vacuum gas oil hydrocracking conversion and selectivity for middle distillate[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16579-16592. |
4 | PENG Chong, DU Yanze, FENG Xiang, et al. Research and development of hydrocracking catalysts and technologies in China[J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 867-877. |
5 | 羡策, 毛以朝, 龙湘云, 等. Y型分子筛应用于双环芳烃加氢裂化多产轻芳烃过程研究进展[J]. 化工进展, 2020, 39(S1): 133-140. |
XIAN Ce, MAO Yichao, LONG Xiangyun, et al. Advances on the application of zeolite Y in the producing light aromatic hydrocarbons from dicyclic aromatics hydrocracking[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 133-140. | |
6 | ABDULRIDHA Samer, JIAO Yilai, XU Shaojun, et al. A comparative study on mesoporous Y zeolites prepared by hard-templating and post-synthetic treatment methods[J]. Applied Catalysis A: General, 2021, 612: 117986. |
7 | ZHANG Ringxin, RAJA Duaa, ZHANG Yong, et al. Sequential microwave-assisted dealumination and hydrothermal alkaline treatments of Y zeolite for preparing hierarchical mesoporous zeolite catalysts[J]. Topics in Catalysis, 2020, 63(3): 340-350. |
8 | QIN Zhengxing, SHEN Wen, ZHOU Shuge, et al. Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter[J]. Microporous and Mesoporous Materials, 2020, 303: 110248. |
9 | TAO Yousheng, KANOH Hirofumi, KANEKO Katsumi. Uniform mesopore-donated zeolite Y using carbon aerogel templating[J]. The Journal of Physical Chemistry B, 2003, 107(40): 10974-10976. |
10 | Javier GARCÃAMARTÃNEZ, JOHNSON Marvin, VALLA Julia, et al. Mesostructured zeolite Y—High hydrothermal stability and superior FCC catalytic performance[J]. Catalysis Science & Technology, 2012, 2(5): 987-994. |
11 | CHAL Robin, Corine GÉRARDIN, BULUT Metin, et al. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J]. ChemCatChem, 2011, 3(1): 67-81. |
12 | WANG Jianyu, LIU Pusheng, BORONAT Mercedes, et al. Organic-free synthesis of zeolite Y with high Si/Al ratios: Combined strategy of in situ hydroxyl radical assistance and post-synthesis treatment[J]. Angewandte Chemie, 2020, 132(39): 17378-17381. |
13 | ZHOU Wenwu, LIU Meifang, ZHOU Yasong, et al. 4,6-Dimethyldibenzothiophene hydrodesulfurization on nickel-modified USY-supported NiMoS catalysts: Effects of modification method[J]. Energy & Fuels, 2017, 31(7): 7445-7455. |
14 | ZHOU Wenwu, WEI Qiang, ZHOU Yasong, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Applied Catalysis B: Environmental, 2018, 238: 212-224. |
15 | TAYEB Karima Ben BEN, LAMONIER Carole, LANCELOT Christine, et al. Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation[J]. Catalysis Today, 2010, 150(3/4): 207-212. |
16 | LI Xiang, WANG Anjie, EGOROVA Marina, et al. Kinetics of the HDS of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over sulfided Mo and NiMo on γ-Al2O3 [J]. Journal of Catalysis, 2007, 250(2): 283-293. |
17 | 姜山, 李朝昕, 蔡智军. 导向剂陈化时间及晶化温度对NaY分子筛质量的影响[J]. 工业催化, 2021, 29(1): 50-52. |
JIANG Shan, LI Zhaoxin, CAI Zhijun. Effect of aging time and crystallization temperature of directing agent on the quality of NaY Zeolite[J]. Industrial Catalysis, 2021, 29(1): 50-52. | |
18 | CUI Qingyan, WANG Shuqin, WEI Qiang, et al. Synthesis and characterization of Zr incorporated small crystal size Y zeolite supported NiW catalysts for hydrocracking of vacuum gas oil[J]. Fuel, 2019, 237: 597-605. |
19 | 李侠, 周珊, 张金山, 等. NaY分子筛导向剂的制备及其性能研究[J]. 无机盐工业, 2016, 48(8): 70-73. |
LI Xia, ZHOU Shan, ZHANG Jinshan, et al. The study on preparation and performance of NaY guide agent[J]. Inorganic Chemicals Industry, 2016, 48(8): 70-73. | |
20 | ZHAO Yuansheng, LIU Zhongqing, LI Wenle, et al. Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size[J]. Microporous and Mesoporous Materials, 2013, 167: 102-108. |
21 | 秦臻, 周亚松, 魏强, 等. 不同硅铝比的小晶粒Y分子筛的理化性质及其加氢裂化性能[J]. 石油化工, 2013, 42(10): 1080-1085. |
QIN Zhen, ZHOU Yasong, WEI Qiang, et al. Physicochemical properties and hydrocracking performance of nano-crystal Y zeolites with different silica-alumina ratio[J]. Petrochemical Technology, 2013, 42(10): 1080-1085. | |
22 | Peng LYU, YAN Lunjing, LIU Yan, et al. Catalytic conversion of coal pyrolysis vapors to light aromatics over hierarchical Y-type zeolites[J]. Journal of the Energy Institute, 2020, 93(4): 1354-1363. |
23 | YU Gan, CHEN Xinqing, XUE Wenjie, et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane[J]. Chinese Journal of Catalysis, 2020, 41(4): 622-630. |
24 | 谭涓, 王诗涵, 董小航, 等. 焙烧高岭土水热合成高硅铝比小晶NaY分子筛[J]. 硅酸盐通报, 2019, 38(12): 3927-3933. |
TAN Juan, WANG Shihan, DONG Xiaohang, et al. Hydrothermal synthesis of small size NaY zeolites with high framework SiO2/Al2O3 ratio from roasted Kaolin[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3927-3933. | |
25 | ROUSSEL Martial, NORSIC Sébastien, LEMBERTON Jean-Louis, et al. Hydrocracking of n-decane on a bifunctional sulfided NiW/silica-alumina catalyst: Effect of the operating conditions[J]. Applied Catalysis A: General, 2005, 279(1/2): 53-58. |
26 | 于政敏, 孙晓艳, 樊宏飞, 等. 氟硅酸铵对小晶粒Y分子筛加氢裂化性能的影响[J]. 石油化工, 2016, 45(4): 422-428. |
YU Zhengmin, SUN Xiaoyan, FAN Hongfei, et al. Effects of (NH4)2SiF6 treatment on performances of small crystal grain Y zeolite in hydrocracking[J]. Petrochemical Technology, 2016, 45(4): 422-428. | |
27 | ZHOU Wenwu, LIU Meifang, ZHANG Qing, et al. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. ACS Catalysis, 2017, 7(11): 7665-7679. |
28 | GUO Fang, LI Jun, LI Wanxi, et al. Quinoline hydrodenitrogenation over NiW/Al-MCM-41 catalysts with different Al contents[J]. Russian Journal of Applied Chemistry, 2017, 90(12): 2055-2063. |
29 | DE LEÓN J N Díaz, PICQUART M, VILLARROEL M, et al. Effect of gallium as an additive in hydrodesulfurization WS2/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2010, 323(1/2): 1-6. |
30 | ZHOU Wenwu, ZHOU Yasong, WEI Qiang, et al. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT)[J]. Chemical Engineering Journal, 2017, 330: 605-615. |
31 | BAO Wenjing, HUANG Tingting, WANG Chongze, et al. Controlled synthesis of efficient NiWS active phases derived from lacunary polyoxometalate and the application in hydrodesulfurization[J]. Journal of Catalysis, 2022, 413: 374-387. |
32 | ALSALME Ali, ALZAQRI Nabil, ALSALEH Ahmad, et al. Efficient Ni-Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate[J]. Applied Catalysis B: Environmental, 2016, 182: 102-108. |
33 | TAYEB Karima Ben, LAMONIER Carole, LANCELOT Christine, et al. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst[J]. Applied Catalysis B: Environmental, 2012, 126: 55-63. |
34 | 左东华, 聂红, MICHEL Vrinat, 等. 硫化态NiW/Al2O3催化剂加氢脱硫活性相的研究Ⅰ.XPS和HREM表征[J]. 催化学报, 2004, 25(4): 309-314. |
ZUO Donghua, NIE Hong, MICHEL Vrinat, et al. Study on the hydrodesulfurization active phase in sulfided NiW/Al2O3 catalyst Ⅰ. XPS and HREM characterizations[J]. Chinese Journal of Catalysis, 2004, 25(4): 309-314. | |
35 | Young Gul HUR, LEE Dae-Won, LEE Kwan-Young. Hydrocracking of vacuum residue using NiWS(x) dispersed catalysts[J]. Fuel, 2016, 185: 794-803. |
36 | CORTÉS Juan Carlos, César RODRÍGUEZ, MOLINA Rafael, et al. Hydrocracking of 1-methylnaphtalene (1MN) over modified clays-supported NiMoS and NiWS catalyst[J]. Fuel, 2021, 295: 120612. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |