Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4296-4306.DOI: 10.16085/j.issn.1000-6613.2022-1797
• Materials science and technology • Previous Articles Next Articles
WANG Shuaiqing(), YANG Siwen, LI Na, SUN Zhanying, AN Haoran()
Received:
2022-09-26
Revised:
2022-11-07
Online:
2023-09-19
Published:
2023-08-15
Contact:
AN Haoran
通讯作者:
安浩然
作者简介:
王帅晴(1999—),女,硕士研究生,研究方向为生物质炭材料储能应用。E-mail:wangshuaiqing55@163.com。
基金资助:
CLC Number:
WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306.
王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1797
种类 | 原料 | 掺杂种类和试剂 | 掺杂元素 | 杂原子含量 | 形貌结构 | 应用 | 电化学性能 | 参考文献 |
---|---|---|---|---|---|---|---|---|
植物基 | 豆浆 | 自掺杂 | N | 7.15%(原子分数) | 炭纳米片 | LIBs | 0.05A/g下100次循环后1084.2mAh/g | [ |
植物基 | 甘蔗渣 | 外源掺杂(尿素) | N | 7.58%(原子分数) | 多孔炭 | Li-S | 0.5C下400次循环后571.5mAh/g | [ |
植物基 | 花粉 | 外源掺杂(尿素) | N | 4.60%(原子分数) | 多孔炭 | SCs | 1A/g下300F/g(6mol/L KOH) | [ |
植物基 | 菜籽饼 | 外源掺杂 (三聚氰胺) | N | 3.48 | 多孔炭 | SCs | 0.05A/g下274F/g(6mol/L KOH) | [ |
植物基 | 竹子 | 外源掺杂(硫粉) | S | 8.28%(原子分数) | 棒状纤维 | KIBs | 0.2A/g下300次循环后203.8mAh/g | [ |
植物基 | 药渣 | 外源掺杂 (硫代乙酰胺) | S | 6.7%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后710mAh/g | [ |
植物基 | 棕榈花 | 外源掺杂(硫脲) | S | 9.86%(质量分数) | 片状多孔炭 | SCs | 1A/g下275F/g(1mol/L H2SO4) | [ |
植物基 | 椴木 | 外源掺杂(植酸) | P | 9.24%(原子分数) | 多孔炭 | SCs | 1mA/cm2下206.5F/g(6mol/L KOH) | [ |
植物基 | 锯末 | 外源掺杂(磷酸) | P | — | 多孔炭 | SCs | 0.1A/g下292F/g(1mol/L H2SO4) | [ |
植物基 | 向日葵 | 自掺杂 | O | 21%(质量分数) | 多孔炭 | SCs | 1A/g下345F/g(6mol/L KOH) | [ |
植物基 | 玉米秸秆 | 自掺杂 | O | 10.68%(原子分数) | 多孔炭片 | SCs | 1A/g下407F/g(1mol/L H2SO4) | [ |
植物基 | 甘蔗渣 | 外源掺杂 (NH4H2PO4) | N、P | 1.87%、1.03% (原子分数) | 片状多孔炭 | LIBs | 0.1A/g下50次循环后816.36mAh/g | [ |
植物基 | 玉米秸秆 | 外源掺杂 (NH4H2PO4) | N、P | 0.90%、1.82% (原子分数) | 折叠层状 | SIBs | 0.25C下100次循环后277mAh/g | [ |
植物基 | 稻壳 | 外源掺杂(硫脲) | S、N | 5.34%、4.85%(质量分数) | 多孔炭 | LIBs | 1A/g下1200次循环后632mAh/g | [ |
植物基 | 刀豆壳 | 外源掺杂 (NH4B5O8·4H2O) | N、B | 2.03%、3.12% (质量分数) | 多孔炭 | SCs | 1A/g下369F/g(6mol/L KOH) | [ |
植物基 | 木材 | 外源掺杂 (硼酸、氨水) | B、N | — | 多孔炭 | SCs | 0.2A/g下318F/g(1mol/L H2SO4) | [ |
植物基 | 小麦粉 | 外源掺杂 (尿素、碘化钾) | N、I | 1.30%、0.65% (原子分数) | 多孔炭 | Li-S | 0.1C下100次循环后 916.7mAh/g | [ |
植物基 | 药渣 | 外源掺杂(三聚氰胺、硫代乙酰胺) | S、N | 8.8%、4.6%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后1060mAh/g | [ |
植物基 | 淀粉 | 外源掺杂 (尿素、H2S) | S、N | 2.11%、5.22% (原子分数) | 多孔炭 | SIBs | 8A/g下3000次循环后156mAh/g | [ |
植物基 | 豆渣 | 自掺杂 | N、O | 2.02%、8.04%(原子分数) | 多孔炭 | Li-S | 1C下600次循环后435.7mAh/g | [ |
植物基 | 榕树根 | 自掺杂 | N、O | 15.17%、1.0%(质量分数) | 层状多孔炭 | Li-S | 0.1C下200次循环后1047mAh/g | [ |
动物基 | 甲壳素 | 自掺杂 | N | 7.29%(原子分数) | 纳米纤维 | SIBs | 0.05A/g下50次循环后320.6mAh/g | [ |
动物基 | 乌贼 | 自掺杂 | N | 9.72%(原子分数) | 纳米球形 | LICs | 1A/g下1000次循环后218.4mAh/g | [ |
动物基 | 猪骨 | 自掺杂 | N、P | 3.42%、0.25%(质量分数) | 多孔炭 | LIBs | 0.5A/g下500次循环后640mAh/g | [ |
动物基 | 鱼皮 | 自掺杂 | N、O、S | 14.02%、8.18%、2.25% (原子分数) | 炭纳米片 | SCs | 0.1A/g下438F/g(6mol/L KOH) | [ |
动物基 | 山羊毛 | 自掺杂 | N、O、P | 3.70%、5.69%、3.37% (原子分数) | 多孔炭 | Li-S | 0.2C下300次循环后489mAh/g | [ |
动物基 | 豆虫 | 自掺杂 | N、O、 P、S | 4.36%、12.86%、0.21%、0.23%(原子分数) | 多孔炭 | SCs | 0.1A/g下371.8F/g(6mol/L KOH) | [ |
微生物基 | 浮萍 | 自掺杂 | N | 4.31%(原子分数) | 多孔炭 | LIBs | 0.1A/g下100次循环后1071mAh/g | [ |
微生物基 | 黑曲霉菌 | 外源掺杂(NH3) | N | — | 管状多孔炭 | SCs | 1A/g下298F/g(6mol/L KOH) | [ |
微生物基 | 细菌纤维素 | 外源掺杂(N3P3Cl6) | N、P | 2.82%、2.76%(原子分数) | 多孔炭 | SIBs | 0.1A/g下150次循环后199mAh/g | [ |
微生物基 | 海带 | 自掺杂 | S、N | 9.12%、4.52%(质量分数) | 炭纳米片 | SIBs | 0.1A/g下300次循环后214mAh/g | [ |
种类 | 原料 | 掺杂种类和试剂 | 掺杂元素 | 杂原子含量 | 形貌结构 | 应用 | 电化学性能 | 参考文献 |
---|---|---|---|---|---|---|---|---|
植物基 | 豆浆 | 自掺杂 | N | 7.15%(原子分数) | 炭纳米片 | LIBs | 0.05A/g下100次循环后1084.2mAh/g | [ |
植物基 | 甘蔗渣 | 外源掺杂(尿素) | N | 7.58%(原子分数) | 多孔炭 | Li-S | 0.5C下400次循环后571.5mAh/g | [ |
植物基 | 花粉 | 外源掺杂(尿素) | N | 4.60%(原子分数) | 多孔炭 | SCs | 1A/g下300F/g(6mol/L KOH) | [ |
植物基 | 菜籽饼 | 外源掺杂 (三聚氰胺) | N | 3.48 | 多孔炭 | SCs | 0.05A/g下274F/g(6mol/L KOH) | [ |
植物基 | 竹子 | 外源掺杂(硫粉) | S | 8.28%(原子分数) | 棒状纤维 | KIBs | 0.2A/g下300次循环后203.8mAh/g | [ |
植物基 | 药渣 | 外源掺杂 (硫代乙酰胺) | S | 6.7%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后710mAh/g | [ |
植物基 | 棕榈花 | 外源掺杂(硫脲) | S | 9.86%(质量分数) | 片状多孔炭 | SCs | 1A/g下275F/g(1mol/L H2SO4) | [ |
植物基 | 椴木 | 外源掺杂(植酸) | P | 9.24%(原子分数) | 多孔炭 | SCs | 1mA/cm2下206.5F/g(6mol/L KOH) | [ |
植物基 | 锯末 | 外源掺杂(磷酸) | P | — | 多孔炭 | SCs | 0.1A/g下292F/g(1mol/L H2SO4) | [ |
植物基 | 向日葵 | 自掺杂 | O | 21%(质量分数) | 多孔炭 | SCs | 1A/g下345F/g(6mol/L KOH) | [ |
植物基 | 玉米秸秆 | 自掺杂 | O | 10.68%(原子分数) | 多孔炭片 | SCs | 1A/g下407F/g(1mol/L H2SO4) | [ |
植物基 | 甘蔗渣 | 外源掺杂 (NH4H2PO4) | N、P | 1.87%、1.03% (原子分数) | 片状多孔炭 | LIBs | 0.1A/g下50次循环后816.36mAh/g | [ |
植物基 | 玉米秸秆 | 外源掺杂 (NH4H2PO4) | N、P | 0.90%、1.82% (原子分数) | 折叠层状 | SIBs | 0.25C下100次循环后277mAh/g | [ |
植物基 | 稻壳 | 外源掺杂(硫脲) | S、N | 5.34%、4.85%(质量分数) | 多孔炭 | LIBs | 1A/g下1200次循环后632mAh/g | [ |
植物基 | 刀豆壳 | 外源掺杂 (NH4B5O8·4H2O) | N、B | 2.03%、3.12% (质量分数) | 多孔炭 | SCs | 1A/g下369F/g(6mol/L KOH) | [ |
植物基 | 木材 | 外源掺杂 (硼酸、氨水) | B、N | — | 多孔炭 | SCs | 0.2A/g下318F/g(1mol/L H2SO4) | [ |
植物基 | 小麦粉 | 外源掺杂 (尿素、碘化钾) | N、I | 1.30%、0.65% (原子分数) | 多孔炭 | Li-S | 0.1C下100次循环后 916.7mAh/g | [ |
植物基 | 药渣 | 外源掺杂(三聚氰胺、硫代乙酰胺) | S、N | 8.8%、4.6%(质量分数) | 多孔炭 | LIBs | 0.1A/g下50次循环后1060mAh/g | [ |
植物基 | 淀粉 | 外源掺杂 (尿素、H2S) | S、N | 2.11%、5.22% (原子分数) | 多孔炭 | SIBs | 8A/g下3000次循环后156mAh/g | [ |
植物基 | 豆渣 | 自掺杂 | N、O | 2.02%、8.04%(原子分数) | 多孔炭 | Li-S | 1C下600次循环后435.7mAh/g | [ |
植物基 | 榕树根 | 自掺杂 | N、O | 15.17%、1.0%(质量分数) | 层状多孔炭 | Li-S | 0.1C下200次循环后1047mAh/g | [ |
动物基 | 甲壳素 | 自掺杂 | N | 7.29%(原子分数) | 纳米纤维 | SIBs | 0.05A/g下50次循环后320.6mAh/g | [ |
动物基 | 乌贼 | 自掺杂 | N | 9.72%(原子分数) | 纳米球形 | LICs | 1A/g下1000次循环后218.4mAh/g | [ |
动物基 | 猪骨 | 自掺杂 | N、P | 3.42%、0.25%(质量分数) | 多孔炭 | LIBs | 0.5A/g下500次循环后640mAh/g | [ |
动物基 | 鱼皮 | 自掺杂 | N、O、S | 14.02%、8.18%、2.25% (原子分数) | 炭纳米片 | SCs | 0.1A/g下438F/g(6mol/L KOH) | [ |
动物基 | 山羊毛 | 自掺杂 | N、O、P | 3.70%、5.69%、3.37% (原子分数) | 多孔炭 | Li-S | 0.2C下300次循环后489mAh/g | [ |
动物基 | 豆虫 | 自掺杂 | N、O、 P、S | 4.36%、12.86%、0.21%、0.23%(原子分数) | 多孔炭 | SCs | 0.1A/g下371.8F/g(6mol/L KOH) | [ |
微生物基 | 浮萍 | 自掺杂 | N | 4.31%(原子分数) | 多孔炭 | LIBs | 0.1A/g下100次循环后1071mAh/g | [ |
微生物基 | 黑曲霉菌 | 外源掺杂(NH3) | N | — | 管状多孔炭 | SCs | 1A/g下298F/g(6mol/L KOH) | [ |
微生物基 | 细菌纤维素 | 外源掺杂(N3P3Cl6) | N、P | 2.82%、2.76%(原子分数) | 多孔炭 | SIBs | 0.1A/g下150次循环后199mAh/g | [ |
微生物基 | 海带 | 自掺杂 | S、N | 9.12%、4.52%(质量分数) | 炭纳米片 | SIBs | 0.1A/g下300次循环后214mAh/g | [ |
26 | MA Di, WU Guang, WAN Jiafeng, et al. Oxygen-enriched hierarchical porous carbon derived from biowaste sunflower heads for high-performance supercapacitors[J]. RSC Advances, 2015, 5(130): 107785-107792. |
27 | ZHENG Shuang, LUO Yuan, ZHANG Kaiyou, et al. Nitrogen and phosphorus co-doped mesoporous carbon nanosheets derived from bagasse for lithium-ion batteries[J]. Materials Letters, 2021, 290: 129459. |
28 | TAO Shi, XU Wei, ZHENG Jihui, et al. Soybean roots-derived N, P co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries[J]. Carbon, 2021, 178: 233-242. |
29 | LUO Lu, LUO Lingcong, DENG Jianping, et al. High performance supercapacitor electrodes based on B/N co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment[J]. International Journal of Hydrogen Energy, 2021, 46(63): 31927-31937. |
30 | WANG Boyao, WANG Hsiaotsu, CHEN Lingyen, et al. Nonlinear bandgap opening behavior of BN co-doped graphene[J]. Carbon, 2016, 107: 857-864. |
31 | SCHIROS Theanne, NORDLUND Dennis, PALOVA Lucia, et al. Atomistic interrogation of B-N codopant structures and their electronic effects in graphene[J]. ACS Nano, 2016, 10(7): 6574-6584. |
32 | 刘铎. 木竹材衍生碳基超级电容器电极材料的制备及其性能研究[D]. 杭州: 浙江农林大学, 2016. |
LIU Duo. Study on the preparation and properties of wood and bamboo derived carbon based supercapacior electrode materials[D]. Hangzhou: Zhejiang A & F University, 2016. | |
33 | REN Juan, ZHOU Yibei, WU Huali, et al. Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2019, 30: 121-131. |
34 | NIU Jin, LIU Mengyue, XU Feng, et al. Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors[J]. Carbon, 2018, 140: 664-672. |
35 | BIAN Zhentao, WU Chunjie, YUAN Chenglong, et al. One-step production of N-O-P-S co-doped porous carbon from bean worms for supercapacitors with high performance[J]. RSC Advances, 2020, 10(51): 30756-30766. |
36 | CAO Lihua, LI Huiling, XU Zhaoxiu, et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor[J]. Diamond and Related Materials, 2021, 114: 108316. |
37 | 毕宏晖, 焦帅, 魏风, 等. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888. |
BI Honghui, JIAO Shuai, WEI Feng, et al. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888. | |
38 | QIN Decai, LIU Zhanying, ZHAO Yanzhang, et al. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode[J]. Carbon, 2018, 130: 664-671. |
39 | CUI Jinlong, QIU Yang, ZHANG Haibang, et al. Sulfur-and nitrogen-doped rice husk-derived C/SiO x composites as high-performance lithium-ion battery anodes[J]. Solid State Ionics, 2021, 361: 115548. |
40 | REN Juan, ZHOU Yibei, GUO Meichen, et al. Novel sustainable nitrogen, iodine-dual-doped hierarchical porous activated carbon as a superior host material for high performance lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2018, 43(43): 20022-20032. |
41 | WAN Hongri, SHEN Xiran, JIANG Hao, et al. Biomass-derived N/S dual-doped porous hard-carbon as high-capacity anodes for lithium/sodium ions batteries[J]. Energy, 2021, 231: 121102. |
42 | HE Liuliu, SUN Wang, SUN Kening, et al. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage[J]. Journal of Power Sources, 2022, 526: 231019. |
43 | FENG Huagui, ZHANG Miao, KANG Jinwei, et al. Nitrogen and oxygen dual-doped porous carbon derived from natural ficus microcarpas as host for high performance lithium-sulfur batteries[J]. Materials Research Bulletin, 2019, 113: 70-76. |
44 | JIANG Jiangmin, ZHANG Yadi, LI Zhiwei, et al. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors[J]. Journal of Colloid and Interface Science, 2020, 567: 75-83. |
45 | ZHAO Qian, MENG Yan, LI Jing, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method[J]. Applied Surface Science, 2019, 481: 473-483. |
46 | NING Ke, ZHAO Guangzhen, LIU Hanxiao, et al. N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors[J]. Diamond and Related Materials, 2022, 126: 109080. |
47 | YANG Shuhua, HAN Zhenzhen, SUN Jing, et al. Preparation of defective ZnFe2O4/graphene composites and their charge storage properties[J]. Electrochemistry Communications, 2018, 92: 19-23. |
1 | SAINI Sunaina, CHAND Prakash, JOSHI Aman. Biomass derived carbon for supercapacitor applications: Review[J]. Journal of Energy Storage, 2021, 39: 102646. |
2 | 张伟, 安兴业, 刘利琴, 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
ZHANG Wei, AN Xingye, LIU Liqin, et al. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783. | |
3 | CHEN Suli, FENG Fan, MA Zifeng. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: 100447. |
4 | HAO Rui, YANG Yun, WANG Hua, et al. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries[J]. Nano Energy, 2018,45: 220-228. |
5 | SUN Dan, LI Wei, GUO Rongting, et al. Preparation of N-doped biomass C@SnO2 composites and its electrochemical performance[J]. Diamond and Related Materials, 2021, 120: 108674. |
6 | ZHU Lin, JIANG Haitao, RAN Wenxu, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science, 2019, 489: 154-164. |
7 | JIANG Guosai, SENTHIL Raja Arumugam, SUN Yanzhi, et al. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors[J]. Journal of Power Sources, 2022, 520: 230886. |
8 | AI Jingui, YANG Shuhua, SUN Yana, et al. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors[J]. Journal of Power Sources, 2021, 484: 229221. |
9 | CHEN Feng, YANG Juan, BAI Tao, et al. Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 192: 99-109. |
10 | TIAN Sheng, GUAN Dongcai, LU Jing, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries[J]. Journal of Power Sources, 2020, 448: 227572. |
11 | SHI Weiwei, CHANG Binbin, YIN Hang, et al. Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors[J]. Sustainable Energy & Fuels, 2019, 3(5): 1201-1214. |
12 | Junke OU, DENG Haixin, ZHANG Hongwei, et al. Nitrogen and phosphorus co-doped porous carbon prepared by direct carbonization method as potential anode material for Li-ion batteries[J]. Diamond and Related Materials, 2022, 124: 108931. |
13 | ZHENG Fangcai, LIU Dong, XIA Guoliang, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 693: 1197-1204. |
14 | 杨婷婷. 生物质多孔碳材料及其复合物的制备与电化学性能的研究[D]. 长春: 吉林大学, 2018. |
YANG Tingting. Black aspergillus-derived highly porous carbon fibers for capacitive applications[D]. Changchun: Jilin University, 2018. | |
15 | WANG Haijun, YUAN Haocheng, ZHAN Wenwei, et al. Integrated N, P co-doped and dense carbon networks produced by a chemical crosslinking strategy: Facilitating high gravimetric/volumetric performance sodium ion batteries[J]. Carbon, 2020, 165: 204-215. |
16 | LI Ruizi, HUANG Jianfeng, LI Jiayin, et al. Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes[J]. Journal of Electroanalytical Chemistry, 2020, 862: 114044. |
17 | 邓秀春, 卓祖优, 白小杰, 等. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651. |
DENG Xiuchun, ZHUO Zuyou, BAI Xiaojie, et al. Three-dimensional hierarchical porous carbon derived from spent culture substrate of white fungus and its electrochemical application[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5642-5651. | |
18 | WANG Shanxing, ZOU Kaixiang, QIAN Yunxian, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries[J]. Carbon, 2019, 144: 745-755. |
19 | GUO Shasha, CHEN Yaxin, SHI Liluo, et al. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for high-performance lithium-ion batteries[J]. Applied Surface Science, 2018, 437: 136-143. |
20 | WAN Hongri, JU Xinzhe, HE Tiantian, et al. Sulfur-doped porous carbon as high-capacity anodes for lithium and sodium ions batteries[J]. Journal of Alloys and Compounds, 2021, 863: 158078. |
21 | MARIA SUNDAR RAJ F Regan, Victor JAYA N, BOOPATHI G, et al. S-doped activated mesoporous carbon derived from the Borassus flabellifer flower as active electrodes for supercapacitors[J]. Materials Chemistry and Physics, 2020, 240: 122151. |
22 | HU Xiwei, FAN Mengying, ZHU Yangyang, et al. Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols[J]. Green Chemistry, 2019, 21(19): 5274-5283. |
23 | WANG Feng, CHEONG Jun Young, HE Qiu, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal, 2021, 414: 128767. |
24 | LIN Guanfeng, WANG Qiong, YANG Xuan, et al. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization[J]. RSC Advances, 2020, 10(30): 17768-17776. |
25 | WANG Cunjing, WU Dapeng, WANG Hongju, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A, 2018, 6(3): 1244-1254. |
48 | 付蓉. 杂原子掺杂生物质碳的制备及超级电容器性能[D]. 大连: 大连理工大学, 2021. |
FU Rong. Preparation of heteroatom-doped biomass-derived carbon and their performance in supercapacitor[D]. Dalian: Dalian University of Technology, 2021. | |
49 | LI J, ZHENG J M, YANG Y. Studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2007, 154(5): A427. |
50 | ZHENG J M, LI J, ZHANG Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1794-1799. |
51 | ZHANG Xiaoyu, JIANG W J, MAUGER A, et al. Minimization of the cation mixing in Li1+ x (NMC)1- x O2 as cathode material[J]. Journal of Power Sources, 2010, 195(5): 1292-1301. |
52 | BRUCE Peter G, FREUNBERGER Stefan A, HARDWICK Laurence J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
53 | FANG Xin, PENG Huisheng. A revolution in electrodes: Recent progress in rechargeable lithium-sulfur batteries[J]. Small, 2015, 11(13): 1488-1511. |
54 | YIN Lichang, LIANG Ji, ZHOU Guangmin, et al. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations[J]. Nano Energy, 2016, 25: 203-210. |
55 | PLITZ I, DUPASQUIER A, BADWAY F, et al. The design of alternative nonaqueous high power chemistries[J]. Applied Physics A, 2006, 82(4): 615-626. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[8] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[9] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[10] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[14] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[15] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |