Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2429-2438.DOI: 10.16085/j.issn.1000-6613.2022-1354
• Materials science and technology • Previous Articles Next Articles
CHEN Shaohua1,2(), WANG Yihua1,2, HU Qiangfei1,2, HU Kun1,2, CHEN Li’ai3, LI Jie1,2
Received:
2022-07-19
Revised:
2022-09-26
Online:
2023-06-02
Published:
2023-05-10
Contact:
CHEN Shaohua
陈少华1,2(), 王义华1,2, 胡强飞1,2, 胡坤1,2, 陈立爱3, 李洁1,2
通讯作者:
陈少华
作者简介:
陈少华(1971—),男,博士,研究方向为环境工程材料。E-mail:chshaohua@126.com。
基金资助:
CLC Number:
CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438.
陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1354
检测方法 | ||||
---|---|---|---|---|
CV EIS | ||||
CA | ||||
CSSWV | ||||
TiO2-rGO | 水热法 | CA | 0.006µg | [ |
ADCSV | ||||
i-t | ||||
SWV |
检测方法 | ||||
---|---|---|---|---|
CV EIS | ||||
CA | ||||
CSSWV | ||||
TiO2-rGO | 水热法 | CA | 0.006µg | [ |
ADCSV | ||||
i-t | ||||
SWV |
检测 方法 | ||||
---|---|---|---|---|
DPM | ||||
DPV | ||||
CV | 0.36μg | |||
GCE/Nf/Agnano | 电沉积 | AC | 0.67μg | [ |
CNF@Binol-Redox | 原位氧化还原 | DPV | 0.954μmol | [ |
EIS | 0.01mmol | |||
i-t | 6.51 |
检测 方法 | ||||
---|---|---|---|---|
DPM | ||||
DPV | ||||
CV | 0.36μg | |||
GCE/Nf/Agnano | 电沉积 | AC | 0.67μg | [ |
CNF@Binol-Redox | 原位氧化还原 | DPV | 0.954μmol | [ |
EIS | 0.01mmol | |||
i-t | 6.51 |
14 | CHEN Shihua, LI Yixiang, LI Peihua, et al. Electrochemical spectral methods for trace detection of heavy metals: a review[J]. TrAC Trends in Analytical Chemistry, 2018, 106: 139-150. |
15 | DING Qi, LI Chen, WANG Haijun, et al. Electrochemical detection of heavy metal ions in water[J]. Chemical Communications, 2021, 57(59): 7215-7231. |
16 | WELCH Christine M, NEKRASSOVA Olga, COMPTON Richard G. Reduction of hexavalent chromium at solid electrodes in acidic media: Reaction mechanism and analytical applications[J]. Talanta, 2005, 65(1): 74-80. |
17 | DEEP Akash, SHARMA Amit L, TUTEJA Satish K, et al. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium( Ⅵ )[J]. Journal of Hazardous Materials, 2014, 278: 559-565. |
18 | TU Jiawei, GAN Ying, LIANG Tao, et al. A miniaturized electrochemical system for high sensitive determination of chromium( Ⅵ ) by screen-printed carbon electrode with gold nanoparticles modification[J]. Sensors and Actuators B: Chemical, 2018, 272: 582-588. |
19 | HUO Danqun, ZHANG Ya, LI Ning, et al. Three-dimensional graphene/amino-functionalized metal-organic framework for simultaneous electrochemical detection of Cd(Ⅱ), Pb(Ⅱ), Cu(Ⅱ), and Hg( Ⅱ )[J]. Analytical and Bioanalytical Chemistry, 2022, 414(4): 1575-1586. |
20 | ADOTEY E K, Amouei TORKMAHALLEH M, BALANAY M. Zinc metal-organic framework with 3-pyridinecarboxaldehyde and trimesic acid as co-ligands for selective detection of Cr(Ⅵ) ions in aqueous solution[J]. Methods Appl. Fluoresc., 2020, 8(4): 13. |
21 | WANG Huilin, LIANG Xitong, WANG Jiutian, et al. Multifunctional inorganic nanomaterials for energy applications[J]. Nanoscale, 2020, 12(1): 14-42. |
22 | ABBAS M N, MOSTAFA G A E. New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury[J]. Analytica Chimica Acta, 2003, 478(2): 329-335. |
23 | FILIK Hayati, ASLHAN AVAN Asiye. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes modified electrochemical sensor for simultaneous speciation and detection of chromium (Ⅵ) and vanadium (Ⅴ) in water samples[J]. Microchemical Journal, 2020, 158: 105242. |
24 | SAHOO S, SATPATI A K. Fabrication of rGO/NiS/AuNCs ternary nanocomposite modified electrode for electrochemical sensing of Cr(Ⅵ) at utra-trace level[J]. Surfaces and Interfaces, 2021,24: 101096. |
25 | 陈少华, 陈文良, 丁益, 等. 纳米材料及其三维结构修饰电极检测多巴胺的研究进展[J]. 化工进展, 2021, 40(11): 6135-6144. |
CHEN Shaohua, CHEN Wenliang, DING Yi, et al. Study on the structure and adsorption mechanism of three dimensional electrochemical modified electrode for dopamine response[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6135-6144. | |
26 | SHAO Yuyan, WANG Jun, WU Hong, et al. Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis, 2010, 22(10): 1027-1036. |
27 | ZHANG Li, PENG Dong, LIANG Ruping, et al. Graphene-based optical nanosensors for detection of heavy metal ions[J]. Trends in Analytical Chemistry, 2018, 102: 280-289. |
28 | LIU Chenglun, HE Chunlan, XIE Taiping, et al. Reduction of graphite oxide using ammonia solution and detection Cr( Ⅵ ) with graphene-modified electrode[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23: 125-130. |
29 | 朱照琪, 马重华, 欧玉静. 基于氧化石墨烯的纳米复合高吸水性聚合物耐盐、缓释性能调控及机理研究[D]. 兰州: 兰州理工大学, 2018. |
ZHU Zhaoqi, MA Chonghua, Yujing OU. Study on salt resistance and slow-release properties and mechanism of nano-composite hyperabsorbent polymer based on GO[D]. Lanzhou: Lanzhou University of Technology, 2018. | |
30 | CHEN Xing, KE Xuxu, LIU Yao, et al. Photocatalytically induced Au/mpg-C3N4 nanocomposites for robust electrochemical detection of Cr( Ⅵ ) in tannery wastewater[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104642. |
31 | BRESLIN Carmel B, BRANAGAN David, GARRY Lynn M. Electrochemical detection of Cr( Ⅵ ) with carbon nanotubes decorated with gold nanoparticles[J]. Journal of Applied Electrochemistry, 2019, 49(2): 195-205. |
32 | BAGHERZADEH Mojtaba, HADIZADEH Zahra, AKRAMI Zakyeh, et al. Electrochemical detection of Cr(Ⅲ) and Cr(Ⅵ) in solution by using ZrO2 modified magnetic nanoparticles by redox probes[J]. Materials Science in Semiconductor Processing, 2021, 131: 105840. |
33 | WANG Yali, MA Yuanyuan, ZHAO Qing, et al. Polyoxometalate-based crystalline catalytic materials for efficient electrochemical detection of Cr(Ⅵ)[J]. Sensors and Actuators B: Chemical, 2020, 305: 127469. |
34 | OUYANG Ruizhuo, BRAGG Stefanie A, CHAMBERS James Q, et al. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium ( Ⅵ )[J]. Analytica Chimica Acta, 2012, 722: 1-7. |
35 | EJETA Shibiru Yadeta, IMAE Toyoko. Selective colorimetric and electrochemical detections of Cr( ) pollutant in water on 3-mercaptopropionic acid-functionalized gold plasmon nanoparticles[J]. Analytica Chimica Acta, 2021, 1152: 338272. |
1 | ANICHINI Cosimo, Włodzimierz CZEPA, PAKULSKI Dawid, et al. Chemical sensing with 2D materials[J]. Chemical Society Reviews, 2018, 47(13): 4860-4908. |
2 | 孙晓飞, 张宁, 刘淑艳, 等. 六价铬Cr(Ⅵ)最新研究进展[J]. 应用化工, 2020, 49(4): 1035-1038, 1043. |
SUN Xiaofei, ZHANG Ning, LIU Shuyan, et al. Recent research progress of hexavalent chromium Cr( Ⅵ )[J]. Applied Chemical Industry, 2020, 49(4): 1035-1038, 1043. | |
3 | 周利英, 周锦帆, 左鹏飞. 六价铬和三价铬的检测技术[J]. 化学通报, 2013, 76(10): 915-922. |
ZHOU Liying, ZHOU Jinfan, ZUO Pengfei. Detection technology for Cr(Ⅵ) and Cr(Ⅲ)[J]. Chemistry, 2013, 76(10): 915-922. | |
4 | THOMPSON Chad M, KIRMAN Christopher R, PROCTOR Deborah M, et al. A chronic oral reference dose for hexavalent chromium-induced intestinal cancer[J]. Journal of Applied Toxicology: JAT, 2014, 34(5): 525-536. |
5 | 王玉杰. 我国水环境重金属污染现状及检测技术研究[J]. 科技视界, 2015(34): 69-70. |
WANG Yujie. Study on heavy metal pollution status and detection technology of water environment in China[J]. Science & Technology Vision, 2015(34): 69-70. | |
6 | DESAI Aamod V, MANNA Biplab, KARMAKAR Avishek, et al. A water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants[J]. Angewandte Chemie, 2016, 55(27): 7811-7815. |
7 | SUN Yuhong, HAN Hong. A novel 3D AgI cationic metal-organic framework based on 1,2,4,5-tetra(4-pyridyl) benzene with selective adsorption of CO2 over CH4, H2O over C2H5OH, and trapping Cr2O7 2- [J]. Journal of Molecular Structure, 2019, 1194: 73-77. |
8 | QIN Xiaomei, BAI Lan, TAN Yizheng, et al. β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: Fabrication, performance and mechanisms[J]. Chemical Engineering Journal, 2019, 372: 1007-1018. |
9 | Uenderson ARAUJO-BARBOSA, Elena PEÑA-VAZQUEZ, BARCIELA-ALONSO Maria Carmen, et al. Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS[J]. Talanta, 2017, 170: 523-529. |
36 | ZHANG Yue, WANG Xiang, WANG Yue, et al. Anderson-type polyoxometalate-based complexes constructed from a new “V”-like bis-pyridine-bis-amide ligand for selective adsorption of organic dyes and detection of Cr( Ⅵ ) and Fe( Ⅲ ) ions[J]. Inorganic Chemistry Frontiers, 2021, 8(20): 4458-4466. |
37 | 吴倩, 毕洪梅, 韩晓军. 重金属离子的电化学检测研究进展[J]. 分析化学, 2021, 49(3): 330-340. |
WU Qian, BI Hongmei, HAN Xiaojun. Research progress of electrochemical detection of heavy metal ions[J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 330-340. | |
38 | ZHANG X, ZHANG Y, DING D, et al. On-site determination of Pb2+ and Cd2+ in seawater by double stripping voltammetry with bismuth-modified working electrodes[J]. Microchemical Journal, 2016, 126: 280-286. |
39 | PIENUTSA Natpichan, YANNAWIBUT Krittamet, PHATTHARAPHONGMANEE Jetthana, et al. Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(3): 529-535. |
40 | OUYANG Ruizhuo, ZHANG Wangyao, ZHOU Shilin, et al. Improved Bi film wrapped single walled carbon nanotubes for ultrasensitive electrochemical detection of trace Cr( Ⅵ )[J]. Electrochimica Acta, 2013, 113: 686-693. |
41 | ZHAO Xia, HUANG Zanling, ZHANG Wanying, et al. N-doped carbon coated TiC nanofiber arrays on Ti-6Al-4V for sensitive electrochemical determination of Cr( Ⅵ )[J]. Electroanalysis, 2022, 34(4): 623-628. |
42 | ROSOLINA Samuel M, BRAGG Stefanie A, OUYANG Ruizhuo, et al. Highly sensitive detection of hexavalent chromium utilizing a sol-gel/carbon nanotube modified electrode[J]. Journal of Electroanalytical Chemistry, 2016, 781: 120-125. |
43 | HUSSEIN Mahmoud A, GANASH Aisha A, ALQARNI Sara A. Electrochemical sensor-based gold nanoparticle/poly(aniline-co-o-toluidine)/graphene oxide nanocomposite modified electrode for hexavalent chromium detection: A real test sample[J]. Polymer-Plastics Technology and Materials, 2019, 58(13): 1423-1436. |
44 | ULHAKIM Muhamad Taufik, REZKI Muhammad, DEWI Kariana Kusuma, et al. Review——recent trend on two-dimensional metal-organic frameworks for electrochemical biosensor application[J]. Journal of the Electrochemical Society, 2020, 167(13): 136509. |
45 | ANSARI Reza, DELAVAR Ali Fallah, Ali MOHAMMAD-KHAH. A solid state Cr( Ⅵ ) ion-selective electrode based on polypyrrole[J]. Microchimica Acta, 2012, 178(1): 71-79. |
46 | FANG Dan, XU Tingting, FANG Leyi, et al. A blood compatible, high-efficient sensor for detection of Cr(Ⅵ) in whole blood[J]. Sensors and Actuators B: Chemical, 2021, 329: 129219. |
47 | ARALEKALLU Shambhulinga, PALANNA Manjunatha, HADIMANI Sowmyashree, et al. Biologically inspired catalyst for electrochemical reduction of hazardous hexavalent chromium[J]. Dalton Transactions, 2020, 49(42): 15061-15071. |
48 | GARDNER Michael, COMBER Sean. Determination of trace concentrations of hexavalent chromium[J]. The Analyst, 2002, 127(1): 153-156. |
49 | RAVISHANKAR T N, MURALIKRISHNA S, SURESH KUMAR K, et al. Electrochemical detection and photochemical detoxification of hexavalent chromium [Cr(Ⅵ)] by Ag doped TiO2 nanoparticles[J]. Analytical Methods, 2015, 7(8): 3493-3499. |
50 | LOKESH Koodlur Sannegowda, SHAMBHULINGA Aralekallu, MANJUNATHA Nemakal, et al. Porphyrin macrocycle-stabilized gold and silver nanoparticles and their application in catalysis of hydrogen peroxide[J]. Dyes and Pigments, 2015, 120: 155-160. |
51 | ARALEKALLU Shambhulinga, MOHAMMED Imadadulla, MANJUNATHA Nemakal, et al. Synthesis of novel azo group substituted polymeric phthalocyanine for amperometric sensing of nitrite[J]. Sensors and Actuators B: Chemical, 2019, 282: 417-425. |
52 | XING Sujie, XU He, CHEN Junshui, et al. Nafion stabilized silver nanoparticles modified electrode and its application to Cr(Ⅵ) detection[J]. Journal of Electroanalytical Chemistry, 2011, 652(1/2): 60-65. |
53 | SAKTHIVEL Srinivas, ANNAMALAI Senthil Kumar. High-performance electrocatalytic reduction and sensing of hazardous hexavalent chromium using a redox-active binol species-impregnated carbon nanofiber-modified electrode[J]. The Journal of Physical Chemistry C, 2022, 126(19): 8296-8311. |
54 | BI Xinyan, AGARWAL Ajay, BALASUBRAMANIAN N, et al. Tripeptide-modified silicon nanowire based field-effect transistors as real-time copper ion sensors[J]. Electrochemistry Communications, 2008, 10(12): 1868-1871. |
55 | BOGOMOLOVA A, KOMAROVA E, REBER K, et al. Challenges of electrochemical impedance spectroscopy in protein biosensing[J]. Analytical Chemistry, 2009, 81(10): 3944-3949. |
56 | DABHADE Ajinkya, JAYARAMAN Sivaraman, PARAMASIVAN Balasubramanian. Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr( Ⅵ ) in water[J]. 3 Biotech, 2021, 11(4): 183. |
57 | LIU Shunli, KANG Mengmeng, YAN Fufeng, et al. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg( Ⅱ ) detection[J]. Electrochimica Acta, 2015, 160: 64-73. |
58 | ZAZOUA A, MORAKCHI K, KHERRAT R, et al. Electrochemical characterization of an EIS sensor functionalized with a TOPO doped polymeric layer for Cr(Ⅵ) detection[J]. IRBM, 2008, 29(2/3): 187-191. |
10 | KAZUI Yuko, OHTA H, WATANABE Daisuke, et al. Rapid and robust speciation/quantitative analysis of arsenous acid and related metabolites in serum by liquid chromatography–inductively coupled plasma-tandem mass spectrometry[J]. Forensic Toxicology, 2019, 37: 424-431. |
11 | QUARLES C, Derrick, SZOLTYSIK Michael, SULLIVAN Patrick, et al. A fully automated total metals and chromium speciation single platform introduction system for ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(2): 284-291. |
12 | JIANG Tianjia, YANG Meng, LI Shanshan, et al. In situ underwater laser-induced breakdown spectroscopy analysis for trace Cr( Ⅵ ) in aqueous solution supported by electrosorption enrichment and a gas-assisted localized liquid discharge apparatus[J]. Anal. Chem., 2017, 89(10): 5557-5564. |
13 | FU Li, LIU Zhong, GE Jingyuan, et al. (001) Plan manipulation of α-Fe2O3 nanostructures for enhanced electrochemical Cr(Ⅵ) sensing[J]. Journal of Electroanalytical Chemistry, 2019, 841: 142-147. |
59 | WANG Yue, MA Jianxin, ZHANG Yue, et al. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr( Ⅵ ), Fe(Ⅲ) ions, and ascorbic acid[J]. Crystal Growth & Design, 2021,21(8): 4390-4397. |
60 | RUDNITSKAYA Alisa, EVTUGUIN Dmitry V, COSTA Luis C, et al. Potentiometric chemical sensors from lignin-poly(propylene oxide) copolymers doped by carbon nanotubes[J]. The Analyst, 2013, 138(2): 501-508. |
61 | STERGIOU Dimitrios V, VELTSISTAS Panayotis G, PRODROMIDIS Mamas I. An electrochemical study of lignin films degradation: Proof-of-concept for an impedimetric ozone sensor[J]. Sensors and Actuators B: Chemical, 2008, 129(2): 903-908. |
62 | WEI Juan, GUO Zheng, CHEN Xing, et al. Ultrasensitive and ultraselective impedimetric detection of Cr( Ⅵ ) using crown ethers as high-affinity targeting receptors[J]. Analytical Chemistry, 2015, 87(3): 1991-1998. |
63 | TAN Feng, CONG Longchao, JIANG Xiao, et al. Highly sensitive detection of Cr(Ⅵ) by reduced graphene oxide chemiresistor and 1,4-dithiothreitol functionalized Au nanoparticles[J]. Sensors and Actuators B: Chemical, 2017, 247: 265-272. |
64 | HE Yan, ZHAO Minggang, YU Meiyan, et al. Interfacial potential barrier driven electrochemical detection of Cr6+ [J]. Analytica Chimica Acta, 2018, 1029: 8-14. |
65 | PEI Zengxia, DING Luyao, LU Meiliang, et al. Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability[J]. The Journal of Physical Chemistry C, 2014, 118(18): 9570-9577. |
66 | MILLER Derek R, AKBAR Sheikh A, MORRIS Patricia A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review[J]. Sensors and Actuators B: Chemical, 2014, 204: 250-272. |
67 | LAVANYA J, SRINIVASAN R, RAVI SANKAR A, et al. Review—Metal-organic frameworks composites for electrochemical detection of heavy metal ions in aqueous medium[J]. Journal of the Electrochemical Society, 2022, 169(4): 047525. |
68 | STERN Callie M, HAYES Darius W, KGOADI Lebogang O, et al. Emerging investigator series: Carbon electrodes are effective for the detection and reduction of hexavalent chromium in water[J]. Environmental Science: Water Research & Technology, 2020, 6(5): 1256-1261. |
69 | RICHTERA Lukas, NGUYEN Hoai Viet, HYNEK David, et al. Electrochemical speciation analysis for simultaneous determination of Cr(Ⅲ) and Cr( Ⅵ ) using an activated glassy carbon electrode[J]. The Analyst, 2016, 141(19): 5577-5585. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[9] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[10] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[14] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[15] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |