Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 5019-5027.DOI: 10.16085/j.issn.1000-6613.2022-1981
• Resources and environmental engineering • Previous Articles
WANG Haoran1(), YIN Quanyu1, FANG Ming2, HOU Jianlin2, LI Jun2, HE Bin2, ZHANG Mingyue1()
Received:
2022-10-24
Revised:
2022-11-09
Online:
2023-09-28
Published:
2023-09-15
Contact:
ZHANG Mingyue
王浩然1(), 殷全玉1, 方明2, 侯建林2, 李军2, 何斌2, 张明月1()
通讯作者:
张明月
作者简介:
王浩然(1998—),男,硕士研究生,研究方向为近临界水处理烟草废弃物。E-mail:lyswhr@yeah.net。
基金资助:
CLC Number:
WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027.
王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1981
水平组 | 料液比(A) | 温度(B) | 反应时间(C) |
---|---|---|---|
1 | 1∶14(10g∶140g) | 180 | 15 |
2 | 1∶6.5(20g∶130g) | 220 | 45 |
3 | 1∶4(30g∶120g) | 260 | 90 |
水平组 | 料液比(A) | 温度(B) | 反应时间(C) |
---|---|---|---|
1 | 1∶14(10g∶140g) | 180 | 15 |
2 | 1∶6.5(20g∶130g) | 220 | 45 |
3 | 1∶4(30g∶120g) | 260 | 90 |
试验组 | 料液比(A) | 温度(B) | 反应时间(C) | 空列(D) |
---|---|---|---|---|
T1 | 1∶14(1) | 260(3) | 15(1) | 1 |
T2 | 1∶6.5(2) | 180(1) | 90(3) | 1 |
T3 | 1∶4(3) | 260(3) | 90(3) | 2 |
T4 | 1∶14(1) | 180(1) | 45(2) | 2 |
T5 | 1∶14(1) | 220(2) | 90(3) | 3 |
T6 | 1∶6.5(2) | 260(3) | 45(2) | 3 |
T7 | 1∶6.5(2) | 220(2) | 15(1) | 2 |
T8 | 1∶4(3) | 220(2) | 45(2) | 1 |
T9 | 1∶4(3) | 180(1) | 15(1) | 3 |
试验组 | 料液比(A) | 温度(B) | 反应时间(C) | 空列(D) |
---|---|---|---|---|
T1 | 1∶14(1) | 260(3) | 15(1) | 1 |
T2 | 1∶6.5(2) | 180(1) | 90(3) | 1 |
T3 | 1∶4(3) | 260(3) | 90(3) | 2 |
T4 | 1∶14(1) | 180(1) | 45(2) | 2 |
T5 | 1∶14(1) | 220(2) | 90(3) | 3 |
T6 | 1∶6.5(2) | 260(3) | 45(2) | 3 |
T7 | 1∶6.5(2) | 220(2) | 15(1) | 2 |
T8 | 1∶4(3) | 220(2) | 45(2) | 1 |
T9 | 1∶4(3) | 180(1) | 15(1) | 3 |
处理组 | 液化率/% | 生物炭产率/% | 气体产率/% |
---|---|---|---|
T1 | 53.1±3.3 | 11.9±0.9 | 35.0±4.1 |
T2 | 55.7±2.0 | 29.7±0.3 | 14.6±1.7 |
T3 | 39.0±2.2 | 21.4±1.6 | 39.6±1.4 |
T4 | 61.2±3.5 | 26.1±0.9 | 12.7±3.1 |
T5 | 57.1±4.6 | 20.5±0.2 | 22.4±4.7 |
T6 | 48.2±2.9 | 17.9±1.3 | 34.0±4.0 |
T7 | 51.0±2.1 | 25.0±0.5 | 24.0±1.6 |
T8 | 44.4±3.6 | 27.6±2.1 | 28.0±2.6 |
T9 | 51.8±2.3 | 31.8±1.4 | 16.4±0.9 |
处理组 | 液化率/% | 生物炭产率/% | 气体产率/% |
---|---|---|---|
T1 | 53.1±3.3 | 11.9±0.9 | 35.0±4.1 |
T2 | 55.7±2.0 | 29.7±0.3 | 14.6±1.7 |
T3 | 39.0±2.2 | 21.4±1.6 | 39.6±1.4 |
T4 | 61.2±3.5 | 26.1±0.9 | 12.7±3.1 |
T5 | 57.1±4.6 | 20.5±0.2 | 22.4±4.7 |
T6 | 48.2±2.9 | 17.9±1.3 | 34.0±4.0 |
T7 | 51.0±2.1 | 25.0±0.5 | 24.0±1.6 |
T8 | 44.4±3.6 | 27.6±2.1 | 28.0±2.6 |
T9 | 51.8±2.3 | 31.8±1.4 | 16.4±0.9 |
试验指标 | 水平 | 料液比(A) | 反应温度 (B)/℃ | 反应时间(C)/min | 空列(D) |
---|---|---|---|---|---|
液化率 /% | 均值1 | 57.1 | 56.3 | 52.0 | 51.1 |
均值2 | 51.7 | 50.8 | 51.3 | 50.4 | |
均值3 | 45.1 | 46.8 | 50.6 | 52.4 | |
极差 | 12.0 | 9.5 | 1.4 | 1.9 | |
生物炭产率 /% | 均值1 | 19.5 | 29.2 | 22.9 | 23.1 |
均值2 | 24.2 | 24.4 | 23.9 | 24.2 | |
均值3 | 26.9 | 17.1 | 23.9 | 23.4 | |
极差 | 7.4 | 12.1 | 1.0 | 1.2 | |
气体产率 /% | 均值1 | 23.4 | 14.6 | 25.2 | 25.9 |
均值2 | 24.1 | 24.8 | 24.8 | 25.4 | |
均值3 | 28.0 | 36.2 | 25.5 | 24.2 | |
极差 | 4.6 | 21.6 | 0.7 | 1.7 |
试验指标 | 水平 | 料液比(A) | 反应温度 (B)/℃ | 反应时间(C)/min | 空列(D) |
---|---|---|---|---|---|
液化率 /% | 均值1 | 57.1 | 56.3 | 52.0 | 51.1 |
均值2 | 51.7 | 50.8 | 51.3 | 50.4 | |
均值3 | 45.1 | 46.8 | 50.6 | 52.4 | |
极差 | 12.0 | 9.5 | 1.4 | 1.9 | |
生物炭产率 /% | 均值1 | 19.5 | 29.2 | 22.9 | 23.1 |
均值2 | 24.2 | 24.4 | 23.9 | 24.2 | |
均值3 | 26.9 | 17.1 | 23.9 | 23.4 | |
极差 | 7.4 | 12.1 | 1.0 | 1.2 | |
气体产率 /% | 均值1 | 23.4 | 14.6 | 25.2 | 25.9 |
均值2 | 24.1 | 24.8 | 24.8 | 25.4 | |
均值3 | 28.0 | 36.2 | 25.5 | 24.2 | |
极差 | 4.6 | 21.6 | 0.7 | 1.7 |
变异来源 | 自由度 | 液化率 | 生物炭产率 | 气化率 | 总有机质 | 总氮磷钾 | 总中微量元素 |
---|---|---|---|---|---|---|---|
料液比 | 2 | 0.026(*) | 0.025(*) | 0.104(—) | 0.044(*) | 0.000(**) | 0.001(**) |
温度 | 2 | 0.042(*) | 0.009(**) | 0.006(**) | 0.206(—) | 0.018(*) | 0.022(*) |
时间 | 2 | 0.684(—) | 0.523(—) | 0.858(—) | 0.433(—) | 0.029(*) | 0.024(*) |
误差 | 2 |
变异来源 | 自由度 | 液化率 | 生物炭产率 | 气化率 | 总有机质 | 总氮磷钾 | 总中微量元素 |
---|---|---|---|---|---|---|---|
料液比 | 2 | 0.026(*) | 0.025(*) | 0.104(—) | 0.044(*) | 0.000(**) | 0.001(**) |
温度 | 2 | 0.042(*) | 0.009(**) | 0.006(**) | 0.206(—) | 0.018(*) | 0.022(*) |
时间 | 2 | 0.684(—) | 0.523(—) | 0.858(—) | 0.433(—) | 0.029(*) | 0.024(*) |
误差 | 2 |
试验 指标 | 料液比(A) | HSD0.05 | 反应温度(B)/℃ | HSD0.05 | 反应时间(C)/min | HSD0.05 |
---|---|---|---|---|---|---|
液化率 | 1∶14 | A | 180 | A | 15 | — |
1∶6.5 | AB | 220 | AB | 45 | — | |
1∶4 | B | 260 | B | 90 | — | |
生物炭 产率 | 1∶4 | A | 180 | A | 15 | — |
1∶6.5 | AB | 220 | A | 45 | — | |
1∶14 | B | 260 | B | 90 | — | |
气化率 | 1∶4 | — | 260 | A | 15 | — |
1∶6.5 | — | 220 | B | 45 | — | |
1∶14 | — | 180 | C | 90 | — |
试验 指标 | 料液比(A) | HSD0.05 | 反应温度(B)/℃ | HSD0.05 | 反应时间(C)/min | HSD0.05 |
---|---|---|---|---|---|---|
液化率 | 1∶14 | A | 180 | A | 15 | — |
1∶6.5 | AB | 220 | AB | 45 | — | |
1∶4 | B | 260 | B | 90 | — | |
生物炭 产率 | 1∶4 | A | 180 | A | 15 | — |
1∶6.5 | AB | 220 | A | 45 | — | |
1∶14 | B | 260 | B | 90 | — | |
气化率 | 1∶4 | — | 260 | A | 15 | — |
1∶6.5 | — | 220 | B | 45 | — | |
1∶14 | — | 180 | C | 90 | — |
处理组 | 总有机质/g·L-1 | 总氮/g·L-1 | 总磷/g·L-1 | 总钾/g·L-1 | 氮磷钾总含量/g·L-1 | 总中微量元素/mg·L-1 |
---|---|---|---|---|---|---|
T1 | 19.6±0.4 | 0.468±0.019 | 0.002±0.001 | 1.193±0.062 | 1.663±0.078 | 31.3±1.8 |
T2 | 37.0±0.7 | 0.748±0.036 | 0.470±0.015 | 2.277±0.041 | 3.494±0.050 | 61.8±2.8 |
T3 | 37.7±1.6 | 0.999±0.010 | 0.025±0.001 | 3.838±0.040 | 4.862±0.078 | 83.3±1.4 |
T4 | 22.5±2.2 | 0.524±0.037 | 0.251±0.007 | 1.144±0.030 | 1.919±0.021 | 32.0±1.6 |
T5 | 23.5±1.6 | 0.483±0.010 | 0.009±0.001 | 1.167±0.040 | 1.658±0.030 | 30.3±1.4 |
T6 | 29.1±1.2 | 0.819±0.030 | 0.007±0.001 | 2.354±0.038 | 3.180±0.019 | 56.1±0.7 |
T7 | 36.6±1.8 | 0.948±0.035 | 0.082±0.012 | 2.649±0.046 | 3.679±0.052 | 68.8±4.7 |
T8 | 52.6±3.0 | 1.249±0.065 | 82.17±0.014 | 3.885±0.029 | 5.216±0.018 | 94.9±2.4 |
T9 | 63.1±1.2 | 1.387±0.061 | 0.556±0.005 | 3.805±0.057 | 5.748±0.017 | 101.0±3.2 |
处理组 | 总有机质/g·L-1 | 总氮/g·L-1 | 总磷/g·L-1 | 总钾/g·L-1 | 氮磷钾总含量/g·L-1 | 总中微量元素/mg·L-1 |
---|---|---|---|---|---|---|
T1 | 19.6±0.4 | 0.468±0.019 | 0.002±0.001 | 1.193±0.062 | 1.663±0.078 | 31.3±1.8 |
T2 | 37.0±0.7 | 0.748±0.036 | 0.470±0.015 | 2.277±0.041 | 3.494±0.050 | 61.8±2.8 |
T3 | 37.7±1.6 | 0.999±0.010 | 0.025±0.001 | 3.838±0.040 | 4.862±0.078 | 83.3±1.4 |
T4 | 22.5±2.2 | 0.524±0.037 | 0.251±0.007 | 1.144±0.030 | 1.919±0.021 | 32.0±1.6 |
T5 | 23.5±1.6 | 0.483±0.010 | 0.009±0.001 | 1.167±0.040 | 1.658±0.030 | 30.3±1.4 |
T6 | 29.1±1.2 | 0.819±0.030 | 0.007±0.001 | 2.354±0.038 | 3.180±0.019 | 56.1±0.7 |
T7 | 36.6±1.8 | 0.948±0.035 | 0.082±0.012 | 2.649±0.046 | 3.679±0.052 | 68.8±4.7 |
T8 | 52.6±3.0 | 1.249±0.065 | 82.17±0.014 | 3.885±0.029 | 5.216±0.018 | 94.9±2.4 |
T9 | 63.1±1.2 | 1.387±0.061 | 0.556±0.005 | 3.805±0.057 | 5.748±0.017 | 101.0±3.2 |
试验指标 | 水平 | 料液比(A) | 反应温度(B)/℃ | 反应时间(C)/min | 空列(D) |
---|---|---|---|---|---|
总有机质 /g·L-1 | 均值1 | 21.9 | 40.9 | 39.8 | 36.4 |
均值2 | 34.2 | 37.6 | 34.7 | 32.3 | |
均值3 | 51.1 | 28.8 | 32.7 | 38.6 | |
极差 | 29.3 | 12.1 | 7.0 | 6.3 | |
总氮磷钾 /g·L-1 | 均值1 | 1.747 | 3.721 | 3.697 | 3.458 |
均值2 | 3.451 | 3.518 | 3.439 | 3.487 | |
均值3 | 5.276 | 3.235 | 3.338 | 3.529 | |
极差 | 3.529 | 0.485 | 0.358 | 0.071 | |
中微量元素 /mg·L-1 | 均值1 | 31.2 | 64.9 | 67.0 | 62.7 |
均值2 | 62.2 | 64.7 | 61.0 | 61.4 | |
均值3 | 93.1 | 56.9 | 58.5 | 62.5 | |
极差 | 61.9 | 8.0 | 8.6 | 1.3 |
试验指标 | 水平 | 料液比(A) | 反应温度(B)/℃ | 反应时间(C)/min | 空列(D) |
---|---|---|---|---|---|
总有机质 /g·L-1 | 均值1 | 21.9 | 40.9 | 39.8 | 36.4 |
均值2 | 34.2 | 37.6 | 34.7 | 32.3 | |
均值3 | 51.1 | 28.8 | 32.7 | 38.6 | |
极差 | 29.3 | 12.1 | 7.0 | 6.3 | |
总氮磷钾 /g·L-1 | 均值1 | 1.747 | 3.721 | 3.697 | 3.458 |
均值2 | 3.451 | 3.518 | 3.439 | 3.487 | |
均值3 | 5.276 | 3.235 | 3.338 | 3.529 | |
极差 | 3.529 | 0.485 | 0.358 | 0.071 | |
中微量元素 /mg·L-1 | 均值1 | 31.2 | 64.9 | 67.0 | 62.7 |
均值2 | 62.2 | 64.7 | 61.0 | 61.4 | |
均值3 | 93.1 | 56.9 | 58.5 | 62.5 | |
极差 | 61.9 | 8.0 | 8.6 | 1.3 |
试验指标 | 料液比 (A) | HSD0.05 | 反应温度(B)/℃ | HSD0.05 | 反应时间(C)/min | HSD0.05 |
---|---|---|---|---|---|---|
总有机质 | 1∶4 | A | 180 | — | 15 | — |
1∶6.5 | AB | 220 | — | 45 | — | |
1∶14 | B | 260 | — | 90 | — | |
总氮磷钾 | 1∶4 | A | 180 | A | 15 | A |
1∶6.5 | B | 220 | A | 45 | AB | |
1∶14 | C | 260 | B | 90 | B | |
中微量 元素 | 1∶4 | A | 180 | A | 15 | A |
1∶6.5 | B | 220 | A | 45 | B | |
1∶14 | C | 260 | B | 90 | B |
试验指标 | 料液比 (A) | HSD0.05 | 反应温度(B)/℃ | HSD0.05 | 反应时间(C)/min | HSD0.05 |
---|---|---|---|---|---|---|
总有机质 | 1∶4 | A | 180 | — | 15 | — |
1∶6.5 | AB | 220 | — | 45 | — | |
1∶14 | B | 260 | — | 90 | — | |
总氮磷钾 | 1∶4 | A | 180 | A | 15 | A |
1∶6.5 | B | 220 | A | 45 | AB | |
1∶14 | C | 260 | B | 90 | B | |
中微量 元素 | 1∶4 | A | 180 | A | 15 | A |
1∶6.5 | B | 220 | A | 45 | B | |
1∶14 | C | 260 | B | 90 | B |
处理组 | 液化率/% | 生物炭产率/% | 气体产率/% | 综合评价值 | 排序 |
---|---|---|---|---|---|
T1 | 0.63 | 0.00 | 0.17 | 0.19 | 8 |
T2 | 0.75 | 0.89 | 0.92 | 0.89 | 2 |
T3 | 0.00 | 0.48 | 0.00 | 0.16 | 9 |
T4 | 1.00 | 0.72 | 1.00 | 0.90 | 1 |
T5 | 0.81 | 0.44 | 0.64 | 0.60 | 5 |
T6 | 0.41 | 0.30 | 0.21 | 0.28 | 7 |
T7 | 0.54 | 0.66 | 0.58 | 0.60 | 4 |
T8 | 0.24 | 0.79 | 0.43 | 0.52 | 6 |
T9 | 0.57 | 1.00 | 0.86 | 0.86 | 3 |
处理组 | 液化率/% | 生物炭产率/% | 气体产率/% | 综合评价值 | 排序 |
---|---|---|---|---|---|
T1 | 0.63 | 0.00 | 0.17 | 0.19 | 8 |
T2 | 0.75 | 0.89 | 0.92 | 0.89 | 2 |
T3 | 0.00 | 0.48 | 0.00 | 0.16 | 9 |
T4 | 1.00 | 0.72 | 1.00 | 0.90 | 1 |
T5 | 0.81 | 0.44 | 0.64 | 0.60 | 5 |
T6 | 0.41 | 0.30 | 0.21 | 0.28 | 7 |
T7 | 0.54 | 0.66 | 0.58 | 0.60 | 4 |
T8 | 0.24 | 0.79 | 0.43 | 0.52 | 6 |
T9 | 0.57 | 1.00 | 0.86 | 0.86 | 3 |
处理组 | 有机质 /g·L-1 | 总氮磷钾 /g·L-1 | 中微量元素 /mg·L-1 | 综合评价值 | 排序 |
---|---|---|---|---|---|
T1 | 0.00 | 0.00 | 0.01 | 0.01 | 9 |
T2 | 0.40 | 0.45 | 0.45 | 0.43 | 5 |
T3 | 0.42 | 0.79 | 0.75 | 0.64 | 3 |
T4 | 0.07 | 0.07 | 0.02 | 0.05 | 7 |
T5 | 0.09 | 0.00 | 0.00 | 0.03 | 8 |
T6 | 0.22 | 0.38 | 0.36 | 0.32 | 6 |
T7 | 0.39 | 0.50 | 0.55 | 0.48 | 4 |
T8 | 0.76 | 0.88 | 0.91 | 0.85 | 2 |
T9 | 1.00 | 1.00 | 1.00 | 1.00 | 1 |
处理组 | 有机质 /g·L-1 | 总氮磷钾 /g·L-1 | 中微量元素 /mg·L-1 | 综合评价值 | 排序 |
---|---|---|---|---|---|
T1 | 0.00 | 0.00 | 0.01 | 0.01 | 9 |
T2 | 0.40 | 0.45 | 0.45 | 0.43 | 5 |
T3 | 0.42 | 0.79 | 0.75 | 0.64 | 3 |
T4 | 0.07 | 0.07 | 0.02 | 0.05 | 7 |
T5 | 0.09 | 0.00 | 0.00 | 0.03 | 8 |
T6 | 0.22 | 0.38 | 0.36 | 0.32 | 6 |
T7 | 0.39 | 0.50 | 0.55 | 0.48 | 4 |
T8 | 0.76 | 0.88 | 0.91 | 0.85 | 2 |
T9 | 1.00 | 1.00 | 1.00 | 1.00 | 1 |
1 | WANG Chunhao, LI Liqing, CHEN Ruofei, et al. Thermal conversion of tobacco stem into gaseous products[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(3): 811-823. |
2 | 中华人民共和国国家统计局. 中国统计年鉴2021[EB/OL]. 2021-10-09[2022-07-20]. . |
National Bureau of Statistics of the People’s Republic of China. China Statistics Yearbook 2021[EB/OL]. 2021-10-09[2022-07-20]. . | |
3 | 董高峰, 田永峰, 尚善斋, 等. 用于加热不燃烧(HnB)卷烟的再造烟叶生产工艺研究进展[J]. 中国烟草学报, 2020, 26(1): 109-117. |
DONG Gaofeng, TIAN Yongfeng, SHANG Shanzhai, et al. Production technology of reconstituted tobacco for heat-not-burn (HnB) cigarettes: A review[J]. Acta Tabacaria Sinica, 2020, 26(1): 109-117. | |
4 | 冀唯妮, 余其昌, 黄菲, 等. 响应面法优化分子蒸馏提纯烟梗浸膏的工艺[J]. 烟草科技, 2019, 52(2): 79-87. |
JI Weini, YU Qichang, HUANG Fei, et al. Application of response surface method to optimize purification of tobacco stem extract by molecular distillation[J]. Tobacco Science & Technology, 2019, 52(2): 79-87. | |
5 | 张志平, 李元清, 刘建国, 等. 响应面法优化烟梗中烟碱提取[J]. 农产品加工, 2018(12): 17-21, 26. |
ZHANG Zhiping, LI Yuanqing, LIU Jianguo, et al. Response surface method to optimize the extraction of nicotine in tobacco stem[J]. Farm Products Processing, 2018(12): 17-21, 26. | |
6 | 姚雯, 彭健, 顾丽莉, 等. 烟叶中茄尼醇提取纯化及应用研究进展[J]. 烟草科技, 2021, 54(1): 104-112. |
YAO Wen, PENG Jian, GU Lili, et al. Research progress on extraction, purification and application of solanesol from tobacco leaves[J]. Tobacco Science & Technology, 2021, 54(1): 104-112. | |
7 | 汪娟. 废弃烟梗中烟碱、茄尼醇及果胶的提取分离研究[D]. 广州:华南师范大学, 2013. |
WANG Juan. Extraction and separation of nicotine, solanesol and pectin from waste tobacco stem[D]. Guangzhou: South China Normal University, 2013. | |
8 | 许春平, 刘远上, 郝辉, 等. 生物酶法降解烟梗末中果胶的研究[J]. 食品与生物技术学报, 2017, 36(2): 194-199. |
XU Chunping, LIU Yuanshang, HAO Hui, et al. Enzymatic degradation of pectin in tobacco stem end[J]. Journal of Food Science and Biotechnology, 2017, 36(2): 194-199. | |
9 | 王亚麒, 魏立本, 易忠经, 等. 烟末(梗)有机肥对3种不同类型作物土壤养分及产量和品质的影响[J]. 中国土壤与肥料, 2019(5): 96-103. |
WANG Yaqi, WEI Liben, YI Zhongjing, et al. Effects of tobacco organic fertilizer on soil nutrient, yield and quality of three different types of crops[J]. Soils and Fertilizers Sciences in China, 2019(5): 96-103. | |
10 | TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
11 | 孟祥河, 戴建波, 曹艳, 等. 亚临界水提法提高甘薯皮可溶性膳食纤维得率[J]. 农业工程学报, 2019, 35(20): 303-310. |
MENG Xianghe, DAI Jianbo, CAO Yan, et al. Increasing yield of soluble dietary fiber from sweet potato peel by using subcritical water extraction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 303-310. | |
12 | KARTHIK V, KUMAR P S, VO D V N, et al. Hydrothermal production of algal biochar for environmental and fertilizer applications: A review[J]. Environmental Chemistry Letters, 2021, 19(2): 1025-1042. |
13 | 黄玉莹, 袁兴中, 李辉, 等. 稻草的水热碳化研究[J]. 环境工程学报, 2013, 7(5): 1963-1968. |
HUANG Yuying, YUAN Xingzhong, LI Hui, et al. Study on hydrothermal carbonization of rice straw[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1963-1968. | |
14 | 姚忠良. 生物质水热处理机制及产物热利用研究[D]. 广州: 华南理工大学, 2020. |
YAO Zhongliang. Study on the mechanism of biomass hydrothermal treatment and product heat utilization[D]. Guangzhou: South China University of Technology, 2020. | |
15 | CHEN Xinfei, MA Xiaoqian, PENG Xiaowei, et al. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization[J]. Bioresource Technology, 2018, 249: 900-907. |
16 | KAMBO H S, DUTTA A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization[J]. Applied Energy, 2014, 135: 182-191. |
17 | 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765. |
JIAN Minfei, GAO Kaifang, YU Houping. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. | |
18 | SAKAKI T, SHIBATA M, MIKI T, et al. Decomposition of cellulose in near-critical water and fermentability of the products[J]. Energy & Fuels, 1996, 10(3): 684-688. |
19 | JIANG Weikun, Gaojin LYU, WU Shubin, et al. Near-critical water hydrothermal transformation of industrial lignins to high value phenolics[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 297-303. |
20 | SEREEWATTHANAWUT I, PRAPINTIP S, WATCHIRARUJI K, et al. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis[J]. Bioresource Technology, 2008, 99(3): 555-561. |
21 | 高岩. 近临界水液化生物质及其应用研究[D]. 长春: 吉林大学, 2019. |
GAO Yan. Near critical water liquefaction biomass and its application[D]. Changchun: Jilin University, 2019. | |
22 | 汤晓君, 黄绪光. 用TOC分析仪测定复混肥料中有机质的含量[J]. 高师理科学刊, 2006, 26(2): 57-59. |
TANG Xiaojun, HUANG Xuguang. The determination of organic matter in compound fertilizer by TOC analyzer[J]. Journal of Science of Teachers’ College and University, 2006, 26(2): 57-59. | |
23 | 吴锐, 孙旭海, 桂文胜, 等. 响应面法优化烟梗萃取工艺[J]. 纸和造纸, 2014, 33(3): 44-47. |
WU Rui, SUN Xuhai, GUI Wensheng, et al. Optimization of extraction technique of tobacco stem using response surface methodology[J]. Paper and Paper Making, 2014, 33(3): 44-47. | |
24 | 隋子峰, 伍捷, 曹豫通, 等. 水热反应温度对烟梗水热炭燃烧特性的影响[J]. 内蒙古科技大学学报, 2022, 41(1): 42-47. |
SUI Zifeng, WU Jie, CAO Yutong, et al. Influence of hydrothermal carbonization temperature on combustion characteristics of tobacco stem hydrochar[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(1): 42-47. | |
25 | 菏泽笑田肥业有限公司. 植物营养液标准: [S/OL].菏泽, 2020: 12-22 [2022-09-19]. |
26 | SUGANO M, TAKAGI H, HIRANO K, et al. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry[J]. Journal of Materials Science, 2008, 43(7): 2476-2486. |
27 | PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1(1): 32-65. |
28 | SHRESTHA A, ACHARYA B, FAROOQUE A A. Study of hydrochar and process water from hydrothermal carbonization of sea lettuce[J]. Renewable Energy, 2021, 163: 589-598. |
29 | NIZAMUDDIN S, BALOCH H A, GRIFFIN G J, et al. An overview of effect of process parameters on hydrothermal carbonization of biomass[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1289-1299. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[3] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[4] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[5] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[6] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[7] | HU Zhaoyan, ZHANG Jingxin, HE Yiliang. Catalytic pyrolysis of polypropylene plastics and product properties with Fe-loaded sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 631-640. |
[8] | WANG Shuyan, ZHANG Xinbo, PENG Anping, LIU Yang, HAO NGO HUU, GUO Wenshan, WEN Haitao. Research progress and challenges in recovery of nitrogen and phosphorus nutrients from water by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5459-5469. |
[9] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[10] | LI Xiuping, YU Yang, HE Wang, LYU Junhui. High-gravity intensified decarburization process and apparent kinetics of AMP-PZ composite solution [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 22-28. |
[11] | YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5065-5073. |
[12] | HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554. |
[13] | PAN Weiliang, WU Qiye, CAO Yunpeng, ZHANG Xianbing, GU Li, HE Qiang. Improvement of nitrate removal and nitrogen selectivity by the synergy of nZVI/BC and (Cu-Pd)/BC [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 981-989. |
[14] | CHEN Yiping, HUANG Yaoyi, ZHENG Chaohong. Research progress of collagen-derived carbon in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6606-6614. |
[15] | SONG Shaohua, XU Jinlan, SONG Xiaoqiao, YU Yuan. Preparation of magnetic biochar and its application in polluted water [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6586-6605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |