Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 169-183.DOI: 10.16085/j.issn.1000-6613.2024-0055
• Energy processes and technology • Previous Articles Next Articles
HU Yang1(), HAN Chuanjun1(
), HU Qiang2, LI Wenying3, AN Quancheng4, SU Yang5, WU Hongsong6, YUAN Guo1
Received:
2024-01-08
Revised:
2024-05-14
Online:
2025-02-13
Published:
2025-01-15
Contact:
HAN Chuanjun
胡洋1(), 韩传军1(
), 胡强2, 李汶颖3, 安全成4, 苏洋5, 武洪松6, 袁果1
通讯作者:
韩传军
作者简介:
胡洋(1995—),女,博士,研究方向为氢能装备。E-mail:yanghu@swpu.edu.cn。
基金资助:
CLC Number:
HU Yang, HAN Chuanjun, HU Qiang, LI Wenying, AN Quancheng, SU Yang, WU Hongsong, YUAN Guo. Research progress on methanol steam reforming reactors for SOFC[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 169-183.
胡洋, 韩传军, 胡强, 李汶颖, 安全成, 苏洋, 武洪松, 袁果. 固体氧化物燃料电池用甲醇水蒸气重整反应器研究进展[J]. 化工进展, 2025, 44(1): 169-183.
储氢技术 | 运输工具 | 压力 /MPa | 体积储氢密度 /kg·m-3 | 储运成本 /CNY·kg-1 | 能耗 /kW·h·kg-1 |
---|---|---|---|---|---|
气态储氢 | |||||
高压气态储氢 | 长管拖车 | 20 | 14.5 | 2.02 | 1.0~1.3 |
管道 | 1~4 | 3.2 | 0.3 | 0.2 | |
液态储氢 | |||||
低温液态储氢 | 槽罐车 | 0.6 | 64 | 12.25 | 15 |
有机液态储氢 | 槽罐车 | 常压 | 40~50 | 15 | — |
固态储氢 | |||||
金属储氢 | 货车 | 4 | 50 | — | 10-13.3 |
储氢技术 | 运输工具 | 压力 /MPa | 体积储氢密度 /kg·m-3 | 储运成本 /CNY·kg-1 | 能耗 /kW·h·kg-1 |
---|---|---|---|---|---|
气态储氢 | |||||
高压气态储氢 | 长管拖车 | 20 | 14.5 | 2.02 | 1.0~1.3 |
管道 | 1~4 | 3.2 | 0.3 | 0.2 | |
液态储氢 | |||||
低温液态储氢 | 槽罐车 | 0.6 | 64 | 12.25 | 15 |
有机液态储氢 | 槽罐车 | 常压 | 40~50 | 15 | — |
固态储氢 | |||||
金属储氢 | 货车 | 4 | 50 | — | 10-13.3 |
原料种类 | 储存条件 | 燃料处理方式 | 富氢气体成分 | 理论氢气体积分数 | 特点 |
---|---|---|---|---|---|
天然气[ | 250atm | 部分氧化≥1123K,放热;水蒸气重整973~1273K,吸热;二氧化碳重整≥913K[ | H2、CH4、CO、CO2、O2 | 50%~75% | 反应过程中易发生爆炸事故 |
甲醇[ | 常温常压 | 甲醇水蒸气重整473~553K,吸热;甲醇部分氧化重整制氢423~573K,放热;甲醇自热重整反应423~573K,吸放热平衡 | H2、H2O、CO、CO2、CH3OH | 40%~75% | 催化剂长期使用稳定性较差,产物中CO浓度较高 |
汽油[ | 常温常压 | 汽油蒸气重整1073K,吸热 | H2、CO2、CO、CH4、烃类 | 70%左右 | 烃类成分多,S易导致催化剂中毒 |
氨 | -240K,1atm;293K,10atm | 氨分解制氢673K[ | NH3、N2、H2 | 75% | 需增加分离过程,清除NH3、N2[ |
原料种类 | 储存条件 | 燃料处理方式 | 富氢气体成分 | 理论氢气体积分数 | 特点 |
---|---|---|---|---|---|
天然气[ | 250atm | 部分氧化≥1123K,放热;水蒸气重整973~1273K,吸热;二氧化碳重整≥913K[ | H2、CH4、CO、CO2、O2 | 50%~75% | 反应过程中易发生爆炸事故 |
甲醇[ | 常温常压 | 甲醇水蒸气重整473~553K,吸热;甲醇部分氧化重整制氢423~573K,放热;甲醇自热重整反应423~573K,吸放热平衡 | H2、H2O、CO、CO2、CH3OH | 40%~75% | 催化剂长期使用稳定性较差,产物中CO浓度较高 |
汽油[ | 常温常压 | 汽油蒸气重整1073K,吸热 | H2、CO2、CO、CH4、烃类 | 70%左右 | 烃类成分多,S易导致催化剂中毒 |
氨 | -240K,1atm;293K,10atm | 氨分解制氢673K[ | NH3、N2、H2 | 75% | 需增加分离过程,清除NH3、N2[ |
1 | 岳爽. 氧-水蒸气燃烧下H2O及其衍生基团对煤中氮元素演化的影响机制[D]. 北京: 华北电力大学(北京), 2022. |
YUE Shuang. Effect of H2O and its resulting groups on nitrogen evolution during oxy-steam combustion of coal[D]. Beijing: North China Electric Power University, 2022. | |
2 | FOSTER Scott, ELZINGA David, et al. The role of fossil fuels in a sustainable energy system[J]. UN Chronicle, 2015, 52(3): 17-19. |
3 | MIYAZAKI Kazuyuki, BOWMAN Kevin. Predictability of fossil fuel CO2 from air quality emissions[J]. Nature Communications, 2023, 14(1): 1604. |
4 | CO2 Emissions in 2022[R]. France: International Energy Agency, 2022. |
5 | 中国加速迈向碳中和电力篇——电力行业碳减排路径[R]. 中国: 麦肯锡, 2021. |
China’s acceleration towards carbon-neutral power: the path of carbon emission reduction in the power sector[R]. China: McKinsey, 2021. | |
6 | ZHANG Rongda, XU Xiaoliang, ZHANG Yeheng, et al. Analysis and forecast of the substitution potential of China’s wind power-hydrogen production for fossil fuel hydrogen production[J]. Journal of Cleaner Production, 2023, 422: 138410. |
7 | ZHU Yanming, XU Xiaoyuan, YAN Zheng, et al. Data acquisition, power forecasting and coordinated dispatch of power systems with distributed PV power generation[J]. The Electricity Journal, 2022, 35(5): 107133. |
8 | MUHAMMAD Fahad Zia, MASHOOD Nasir, ELHOUSSIN Elbouchikhi, et al. Energy management system for a hybrid PV-wind-tidal-battery-based islanded DC microgrid: Modeling and experimental validation[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112093. |
9 | 李臻, 曹增新, 蒋程, 等. 应用于光伏发电并网逆变器的有源阻尼控制策略[J]. 电网与清洁能源, 2021, 37(11): 102-108. |
LI Zhen, CAO Zengxin, JIANG Cheng, et al. Active damping control strategy applied to grid-connected inverter of photovoltaic power generation[J]. Power System and Clean Energy, 2021, 37(11): 102-108. | |
10 | ZHAO Chen, XING Shuang, LIU Wei, et al. Air and H2 feed systems optimization for open-cathode proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11940-11951. |
11 | HSUEH Ching-Yi, CHU Hsin-Sen, YAN Wei-Mon. Numerical study on micro-reformer performance and local transport phenomena of the plate methanol steam micro-reformer[J]. Journal of Power Sources, 2009, 187(2): 535-543. |
12 | The Future of Hydrogen[R]. Japan: International Energy Agency, 2019. |
13 | 许世森, 程健. 燃料电池发电系统[M]. 北京: 中国电力出版社, 2006. |
XU Shisen, CHENG Jian. Fuel cell power generation system [M]. Beijing: China Electric Power Press, 2006. | |
14 | 氢能产业链全景图(中):基础设施篇:氢储运、加注:承上启下,铺就绿氢坦途[EB/OL]. 平安证券研究所, 2023. . |
Panorama of the hydrogen energy industry chain (middle): Infrastructure: hydrogen storage, transportation and refueling: connecting the past and the next, paving a smooth road for green hydrogen[EB/OL]. Ping An Securities Research Institute, 2023. . | |
15 | CUI Tiancheng, SHANG Juan, HUA Zhengli, et al. A coupled cohesive modeling approach for predicting fractures in low alloy steel under high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2702-2715. |
16 | WAN Chuancong, ZHU Shaolong, SHI Chaoyue, et al. Numerical simulation on pressure evolution process of liquid hydrogen storage tank with active cryogenic cooling[J]. International Journal of Refrigeration, 2023, 150: 47-58. |
17 | SIMANI Marzieh, DEHGHANI Hossein. The study of electrochemical hydrogen storage behavior of the UiO-66 framework on the metal/reduced graphene oxide substrate[J]. Fuel, 2023, 341: 127624. |
18 | 张雨舒. SOFC系统甲烷水蒸汽重整Ni基催化剂性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
ZHANG Yushu. The Ni-based catalyst performance study for methane steam reforming in solid oxide fuel cell system[D]. Harbin: Harbin Institute of Technology, 2019. | |
19 | 易邹东一. 面向PEMFC的自热型甲醇重整制氢反应器的研发[D]. 杭州: 浙江大学, 2019. |
Dongyi YI-ZOU. Development of a self-heating methanol reforming hydrogen production reactor for PEMFC[D]. Hangzhou: Zhejiang University, 2019. | |
20 | 高立达, 薛青松, 路勇, 等. 抗硫中毒Pt/CeO2/Al2O3催化剂Ⅰ.汽油蒸汽重整制氢反应性能及催化剂表征[J]. 石油化工, 2008, 37(7): 662-666. |
GAO Lida, XUE Qingsong, LU Yong, et al. Sulfur-tolerant Pt/CeO2/Al2O3 catalyst Ⅰ. Performance of hydrogen production via steam reforming of gasoline and catalyst characterization[J]. Petrochemical Technology, 2008, 37(7): 662-666. | |
21 | 王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂研究进展[J]. 材料导报, 2024, 38(19): 136-148. |
WANG Fan, ZHAO Yuchen, ZHENG Wenyue. Recent advances in research on ruthenium-based catalysts for hydrogen production from ammonia decomposition[J]. Materials Reports, 2024, 38(19): 136-148. | |
22 | 李建伟, 陈冲, 王丹, 等. 甲烷二氧化碳重整热力学分析[J]. 石油与天然气化工, 2015, 44(3): 60-64. |
LI Jianwei, CHEN Chong, WANG Dan, et al. Thermodynamic analysis of methane reforming with carbon dioxide[J]. Chemical Engineering of Oil & Gas, 2015, 44(3): 60-64. | |
23 | ALAGHARU Vyjayanthi. Analysis of ammonia decomposition reactor to generate hydrogen for fuel cell applications[J]. Journal of Power Sources, 2010, 195(3): 829-833. |
24 | 柯昌明. 甲烷水汽重整动力学研究及抗积炭催化剂设计[D]. 合肥: 中国科学技术大学, 2020. |
KE Changming. The kinetics and coke-resistant catalysts design of steam methane reforming[D]. Hefei: University of Science and Technology of China, 2020. | |
25 | PERNG Shiang-Wuu, WU Horng-Wen. Effect of depth and diameter of cylindrical cavity in a plate-type methanol steam reformer on estimated net power of PEMFC[J]. Energy Conversion and Management, 2018, 177: 190-209. |
26 | FARNAK M, ESFAHANI J A, BOZORGMEHRI Shahriar. An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas[J]. Renewable Energy, 2020, 147: 155-163. |
27 | DE SOUZA Túlio A Z, CORONADO C J R, SILVEIRA José Luz, et al. Economic assessment of hydrogen and electricity cogeneration through steam reforming-SOFC system in the Brazilian biodiesel industry[J]. Journal of Cleaner Production, 2021, 279: 123814. |
28 | Maciej BĄKAŁA, MARTSINCHYK Katsiaryna, Konrad MOTYLIŃSKI, et al. Numerical analysis of natural gas, hydrogen and ammonia fueled solid oxide fuel cell based micro cogeneration units with anodic gas recirculation[J]. International Journal of Hydrogen Energy, 2024, 52: 952-964. |
29 | 孙杨, 陈海峰, 杨杰, 等. 固体氧化物燃料电池电解质发展现状[J]. 中国材料进展, 2023, 42(5): 421-430. |
SUN Yang, CHEN Haifeng, Yang Jie, et al. The development status of solid oxide fuel cell electrolyte[J]. Materials China, 2023, 42(5): 421-430. | |
30 | ABDALLA Abdalla M, ABDELREHIM Osama, WEI Bo, et al. Hydrogen production technologies: Conventional processes[M]// Hydrogen Economy. Amsterdam: Elsevier, 2023: 381-396. |
31 | A Yu KAPRAN, ORLYK S M. Hydrogen production in methanol reforming on modified copper-zinc catalysts: A review[J]. Theoretical and Experimental Chemistry, 2017, 53(1): 1-16. |
32 | BAGHERZADEH Seyed Behnam, HAGHIGHI Mohammad. Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming[J]. Energy Conversion and Management, 2017, 142: 452-465. |
33 | HERDEM Münür Sacit, SINAKI Maryam Younessi, FARHAD Siamak, et al. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems[J]. International Journal of Energy Research, 2019, 43(10): 5076-5105. |
34 | SUN Zhao, SUN Zhiqiang. Hydrogen generation from methanol reforming for fuel cell applications: a review[J]. Journal of Central South University, 2020, 27(4): 1074-1103. |
35 | 王发. 甲醇转化制氢和保护气技术[J]. 河北化工, 2011, 34(12): 38-40. |
WANG Fa. Conversion of methanol to hydrogen and protective gas technology[J]. Hebei Chemical Industry, 2011, 34(12): 38-40. | |
36 | SU Tien Bau, Min Hon REI. Steam reforming reactions of methanol over nickel and copper-catalysts[J]. Journal of the Chinese Chemical Society, 1991, 38(6): 535-541. |
37 | MIZUNO Koichi, YOSHIKAWA Kuniaki, WAKEJIMA Naohisa, et al. Production of synthesis gas with various compositions of H2, CO, and CO2 from methanol and water on a Ni-K/Al2O3 catalyst[J]. Chemistry Letters, 1986, 179(11): 1969-1972. |
38 | IWASA Nobuhiro, MASUDA Satoshi, OGAWA Noriaki, et al. Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction[J]. Applied Catalysis A: General, 1995, 125(1): 145-157. |
39 | MASUDA Satoshi, IWASA Nobuhiro, TAKEZAWA Nobutsune, et al. Highly selective supported Pd catalysts for steam reforming of methanol[J]. Catalysis Letters, 1993, 19(2-3): 211-216. |
40 | ABAIDI Abou Houraira, MADANI Brahim. Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert[J]. International Journal of Hydrogen Energy, 2021, 46(75): 37583-37598. |
41 | WANG Yancheng, HONG Ziyue, MEI Deqing. A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6734-6744. |
42 | CHEN Wei-Hsin, TENG Chen-Hsiang, CHIH Yi-Kai, et al. Optimization of autothermal reforming of ultrasonic methanol sprays over Cu/ZnO catalyst for hydrogen production via a statistical approach[J]. Applied Thermal Engineering, 2024, 257: 124447. |
43 | HERDEM Münür Sacit, MUNDHWA Mayur, FARHAD Siamak, et al. Catalyst layer design and arrangement to improve the performance of a microchannel methanol steam reformer[J]. Energy Conversion and Management, 2019, 180: 149-161. |
44 | CHIH Yi-Kai, CHEN Wei-Hsin, YOU Siming, et al. Statistical optimization of hydrogen production from bio-methanol steam reforming over Ni-Cu/Al2O3 catalysts[J]. Fuel, 2023, 331: 125691. |
45 | ZHENG Zefeng, FANG Yanxiong, YANG Jianhan, et al. A highly active and hydrothermal-resistant Cu/ZnO@NC catalyst for aqueous phase reforming of methanol to hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(2): 950-961. |
46 | JIA Xiangkun, ZHANG Huan, REN Biying, et al. Fe-Ni-Ce-Zr-modified CuO-ZnO catalyst for methanol steam reforming[J]. Journal of the Energy Institute, 2023, 110: 101316. |
47 | 何鹏, 吕靖, 刘应春, 等. 基于列管式固定床反应器的换热结构设计进展[J]. 石油化工设备, 2021, 50(3): 60-67. |
HE Peng, Jing LYU, LIU Yingchun, et al. Design progress of heat exchange structure based on tubular fixed bed reactor[J]. Petro-Chemical Equipment, 2021, 50(3): 60-67. | |
48 | ZHU Jimin, CUI Xiaoti, ARAYA Samuel Simon. Comparison between 1D and 2D numerical models of a multi-tubular packed-bed reactor for methanol steam reforming[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22704-22719. |
49 | HEINZEL A, VOGEL B, HÜBNER P. Reforming of natural gas—Hydrogen generation for small scale stationary fuel cell systems[J]. Journal of Power Sources, 2002, 105(2): 202-207. |
50 | 潘立卫. 板翅式甲醇水蒸汽重整制氢反应器的研究[D]. 大连: 中国科学院大连化学物理研究所, 2005. |
PAN Liwei. Studies on a plate-fin reformer for methanol steam reforming in fuel cell systems [D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2005. | |
51 | WANG Yancheng, WU Qiong, MEI Deqing, et al. Development of highly efficient methanol steam reforming system for hydrogen production and supply for a low temperature proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25317-25327. |
52 | SUNDARESAN Meenakshi, RAMASWAMY Sitaram, MOORE Robert M, et al. Catalytic burner for an indirect methanol fuel cell vehicle fuel processor[J]. Journal of Power Sources, 2003, 113(1): 19-36. |
53 | 汪翼东. 面向PEMFC的甲醇现场重整制氢系统设计与应用研究[D]. 杭州: 浙江大学, 2019. |
WANG Yidong. Design and application study of methanol fuel processing system for PEMFC[D]. Hangzhou: Zhejiang University, 2019. | |
54 | YAN Changfeng, YE Wen, GUO Changqing, et al. Numerical simulation and experimental study of hydrogen production from dimethyl ether steam reforming in a micro-reactor[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18642-18649. |
55 | KIM Gap Yong, Rhett MAYOR J, NI Jun. Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model[J]. Chemical Engineering Journal, 2005, 110(1/2/3): l-10. |
56 | STUTZ Michael J, POULIKAKOS Dimos. Effects of microreactor wall heat conduction on the reforming process of methane[J]. Chemical Engineering Science, 2005, 60(24): 6983-6997. |
57 | Jeong Se SUH, LEE Ming Tsang, GREIF Ralph, et al. Transport phenomena in a steam-methanol reforming microreactor with internal heating[J]. International Journal of Hydrogen Energy, 2009, 34(1): 314-322. |
58 | CHU Xuyang, CHEN Wei, TANG Xiaojin, et al. Research on the hydrogen production performance of methanol reforming microchannels with multi-scale structures[J]. International Journal of Hydrogen Energy, 2022, 47(90): 38155-38169. |
59 | WU Qiong, MEI Deqing, QIU Xingye, et al. Development of multilevel amplified methanol steam reforming microreactor with high hydrogen production rate[J]. Fuel, 2023, 350: 128800. |
60 | 冯艳冰. 表面多孔微通道制氢反应器的设计与制造基础研究[D]. 杭州: 浙江大学, 2019. |
FENG Yanbing. Fundamental study on the design and fabrication of micro channel reactor with porous surface for hydrogen production[D]. Hangzhou: Zhejiang University, 2019. | |
61 | ZHANG Huajing, XU Chao, YU Hangyu, et al. Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside[J]. Energy, 2022, 254: 124330. |
62 | MEI Deqing, LIANG Lingwei, QIAN Miao, et al. A performance study of methanol steam reforming in an A-type microchannel reactor[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17690-17701. |
63 | GUAN Delun, WANG Feng, ZHANG Xiuqin, et al. Comprehensive study on catalytic coating tubular reactor with electromagnetic induction heating for hydrogen production through methanol steam reforming[J]. International Journal of Hydrogen Energy, 2024, 50: 1-17. |
64 | CHIH Yi-Kai, SU Yuqi, CHEN Wei-Hsin, et al. Optimization for hydrogen production from methanol partial oxidation over Ni-Cu/Al2O3 catalyst under sprays[J]. International Journal of Hydrogen Energy, 2022, 47(96): 40559-40572. |
65 | WANG Yancheng, LIU Haiyu, MEI Deqing, et al. A novel thermally autonomous methanol steam reforming microreactor using SiC honeycomb ceramic as catalyst support for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(51): 25878-25892. |
66 | SAYIN Cenk, OZSEZEN Ahmet Necati, CANAKCI Mustafa. The influence of operating parameters on the performance and emissions of a DI diesel engine using methanol-blended-diesel fuel[J]. Fuel, 2010, 89(7): 1407-1414. |
67 | BAYRAKTAR Hakan. An experimental study on the performance parameters of an experimental CI engine fueled with diesel-methanol-dodecanol blends[J]. Fuel, 2008, 87(2): 158-164. |
68 | 徐帅, 汪洋, 李智勇, 等. 柴油和甲醇喷射相位对柴油微引燃甲醇直喷发动机的影响[J]. 武汉大学学报(工学版), 2020, 53(12): 1112-1120. |
XU Shuai, WANG Yang, LI Zhiyong, et al. Effects of diesel and methanol injection phases on the engine of diesel ignition and methanol direct injection[J]. Engineering Journal of Wuhan University, 2020, 53(12): 1112-1120. | |
69 | LI Gang, ZHANG Chunhua, LI Yangyang. Effects of diesel injection parameters on the rapid combustion and emissions of an HD common-rail diesel engine fueled with diesel-methanol dual-fuel[J]. Applied Thermal Engineering, 2016, 108: 1214-1225. |
70 | 王鑫, 马洒力, 王萱. 工业动力电池充电场所逸散氢气监测方法[C]//2023国际石油石化技术会议. 陕西省石油学会, 2023. |
WANG Xin, MA Sali, WANG Xuan. Monitoring methods of hydrogen escaping from industrial power battery charging sites and application trend of power battery in the future[C]// 2023 International Petroleum and Petrochemical Technology Conference. Shaanxi Petroleum Society, 2023. | |
71 | LI Yongsheng, LUO Chunhuan, SU Qingquan. Cold start-up study of methanol reformer based on chemical-looping combustion[J]. Fuel, 2022, 317: 122850. |
72 | 毛祥, 李伟钊, 苑亚, 等. 催化燃烧加热甲醇重整制氢反应器性能研究[J]. 化学工程, 2022, 50(6): 61-66. |
MAO Xiang, LI Weizhao, YUAN Ya, et al. Properties of methanol reforming reactor heated by catalytic combustion for hydrogen production[J]. Chemical Engineering, 2022, 50(6): 61-66. | |
73 | JOSHI Shailesh N, DEDE Ercan M. Effect of sub-cooling on performance of a multi-jet two phase cooler with multi-scale porous surfaces[J]. International Journal of Thermal Sciences, 2015, 87: 110-120. |
74 | CAGLAR Ozgur Yasar, Doga DEMIRHAN C, AVCI Ahmet K. Modeling and design of a microchannel reformer for efficient conversion of glycerol to hydrogen[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7579-7585. |
75 | PAUNOVIC Violeta, SCHOUTEN Jaap C, NIJHUIS T A. Direct synthesis of hydrogen peroxide in a wall-coated microchannel reactor over Au-Pd catalyst: A performance study[J]. Catalysis Today, 2015, 248: 160-168. |
76 | PEPPLEY Brant A, AMPHLETT John C, KEARNS Lyn M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network[J]. Applied Catalysis A: General, 1999, 179(1/2): 21-29. |
77 | CHEN Junjie, LI Tengfei. Effect of catalytic washcoat shape and properties on mass transfer characteristics of microstructured steam-methanol reformers for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(37): 16375-16397. |
78 | TANG Xincheng, LI Jiaqi, FANG Zhenchang, et al. Single Ni-inserted Cu(111) surface: A DFT study of adsorption and reaction mechanisms of methanol steam reforming[J]. Applied Surface Science, 2022, 596: 153635. |
79 | LU Weiqin, ZHANG Rongjun, TOAN Sam, et al. Microchannel structure design for hydrogen supply from methanol steam reforming[J]. Chemical Engineering Journal, 2022, 429(1): 132286. |
80 | TURCO M, BAGNASCO G, COSTANTINO U, et al. Production of hydrogen from oxidative steam reforming of methanol Ⅱ. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts[J]. Journal of Catalysis, 2005, 228(1): 56-65. |
81 | 黄林新. 表面多孔化微通道制氢反应器的分形构建及其传热传质特性研究[D]. 杭州: 浙江大学, 2019. |
HUANG Linxin. Fractal construction of microchannel reactor with porous surface for hydrogen production and study on heat and mass transfer characteristics[D]. Hangzhou: Zhejiang University, 2019. | |
82 | WANG Feng, LI Longjian, LIU Yanyun. Effects of flow and operation parameters on methanol steam reforming in tube reactor heated by simulated waste heat[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26270-26276. |
83 | MAO Xiang, LI Weizhao, YUAN Ya, et al. Numerical analysis of methanol steam reforming reactor heated by catalytic combustion for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(32): 14469-14482. |
84 | HAN Sang Hyeon, YU Dongjin, YU Sangseok, et al. A numerical study of geometric effects on the performance characteristics of shell-and-tube methanol reformers[J]. International Journal of Hydrogen Energy, 2022, 47(31): 14211-14224. |
85 | ZHUANG Xiaoru, XIA Xin, XU Xinhai, et al. Experimental investigation on hydrogen production by methanol steam reforming in a novel multichannel micro packed bed reformer[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11024-11034. |
86 | HUANG Cheng-Chiang, HUANG Yuh-Jeen, WANG Hsueh-Sheng, et al. A well-dispersed catalyst on porous silicon micro-reformer for enhancing adhesion in the catalyst-coating process[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7753-7764. |
87 | ENGELBRECHT Nicolaas, CHIUTA Steven, BESSARABOV Dmitri G. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes[J]. Journal of Power Sources, 2018, 386: 47-55. |
88 | IZQUIERDO Urko, NEUBERG Stefan, PECOV S, et al. Hydrogen production with a microchannel heat-exchanger reactor by single stagewater-gas shift; catalyst development[J]. Chemical Engineering Journal, 2017, 313: 1494-1508. |
89 | Sinan KOC, AVCI Ahmet K. Reforming of glycerol to hydrogen over Ni-based catalysts in a microchannel reactor[J]. Fuel Processing Technology, 2017, 156: 357-365. |
90 | ZHUANG Xiaoru, XU Xinhai, LI Lun, et al. Numerical investigation of a multichannel reactor for syngas production by methanol steam reforming at various operating conditions[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14790-14805 |
91 | MEI Deqing, FENG Yanbing, QIAN Miao, et al. An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2268-2277. |
92 | 卜永东, 沈寅麒, 杜小泽, 等. 仿蜂巢微通道分叉结构的甲醇重整制氢[J]. 化工学报, 2013, 64(6): 2177-2185. |
BU Yongdong, SHEN Yinqi, DU Xiaoze, et al. Hydrogen production by steam reforming of methanol in reactor with comby micro-channel network[J]. CIESC Journal, 2013, 64(6): 2177-2185. | |
93 | PERNG Shiang Wuu, WU Horng Wen. Enhancement of proton exchange membrane fuel cell net electric power and methanol-reforming performance by vein channel carved into the reactor plate[J]. Energy, 2023, 281: 128308. |
94 | XIE Rui, SUN Jie, SHI Yaolu, et al. Baffled-type thermochemical reactor for high-efficient hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy, 2023, 48(61): 23425-23439. |
95 | SRIVASTAVA Alankrit, KUMAR Parmod, DHAR Atul. Performance enhancement of methanol reforming reactor through finned surfaces and diffused entry for on-board hydrogen generation[J]. International Journal of Hydrogen Energy, 2022, 47(11): 7478-7490. |
96 | XIAO Shengying, XU Xinrui, XU Jiawei, et al. Operating performance characteristics and analysis of a high temperature fuel cell system integrated with a methanol steam reformer[J]. International Journal of Hydrogen Energy, 2024, 50: 1200-1217. |
97 | KIM Taegyu. Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34: 6790-6798. |
98 | ZHANG Shubin, ZHANG Yufeng, CHEN Junyu, et al. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use[J]. Journal of Power Sources, 2018, 389: 37-49. |
99 | CHEN Chengchun, JENG Ming-Shan, Chih-Hsing LEU, et al. Low-level CO in hydrogen-rich gas supplied by a methanol processor for PEMFCs[J]. Chemical Engineering Science, 2011, 66(21): 5095-5106. |
100 | DOLANC Gregor, Darko BELAVIČ, HROVAT Marko, et al. A miniature fuel reformer system for portable power sources[J]. Journal of Power Sources, 2014, 271: 392-400. |
101 | WU Qiong, WANG Yancheng, MEI Deqing, et al. Development of methanol steam reforming microreactor based on stacked wave sheets and copper foam for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(9): 6282-6294. |
102 | RASHEED Rasheed Kamal Abdul, LIAO Quan, ZHANG Caizhi, et al. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3142-3165. |
103 | Hydrogen fuel quality-product specification: [S]. 2019. |
104 | XIONG Xingyu, LIANG Kao, MA Guiliang, et al. Three-dimensional multi-physics modelling and structural optimization of SOFC large-scale stack and stack tower[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2742-2761. |
[1] | SHAO Xiangyu, CAO Tianhao, XIONG Yanyi, PU Liang, LEI Gang, GAO Jianliang. Research hotspots, frontiers and evolution in the field of liquid hydrogen in China during the last 30 years (1994—2023) [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 212-227. |
[2] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[3] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
[4] | ZOU Yan, LIN Wei, YANG Wei, ZHANG Yanrong. Optimization of wet desulfurization process with iron chelates [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 549-557. |
[5] | WANG Yue, ZHANG Xuerui, SONG Xiwen, CHEN Boyan, LI Qingxun, ZHONG Haijun, HU Xiaowei, HE Shuai. Overview and prospect of ammonia synthesis with hydrogen produced via water electrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 180-188. |
[6] | WANG Bo, WANG Bin, GONG Xiang, YANG Fusheng, FANG Tao. Enhancing dehydrogenation performance of liquid organic hydrogen carriers based on reactor design: Research progress [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 189-208. |
[7] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[8] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
[9] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
[10] | GAO Congzhi, ZHANG Yaxuan, LIN Lu, DENG Xiaoting, YIN Xia, DING Yigang, XIAO Yanhua, DU Zhiping. Synthesis process of neopentyl glycol [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 469-478. |
[11] | CHEN Gaoxiang, WANG Rongchang, JIANG Jiacheng. Mechanism of cathodic electron transfer and hydrogen–mediated enhanced measures in microbial electrosynthesis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 504-516. |
[12] | XU Qingqing, ZHANG Xuan, ZHAO Ruidong, XIONG Xin, JIANG Lumeng, YU Shengyang. Bayesian network risk assessment method for hydrogen blending natural gas pipeline leakage [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 61-70. |
[13] | LI Sheng, CHEN Yazhou, JIANG Wei, PENG Jie, FAN Caiwei, SHAO Meng. Numerical simulation of proton exchange membrane fuel cell catalyst ink mixing process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4800-4809. |
[14] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[15] | XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |