Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 180-188.DOI: 10.16085/j.issn.1000-6613.2024-1198
• Energy processes and technology • Previous Articles Next Articles
WANG Yue(), ZHANG Xuerui, SONG Xiwen, CHEN Boyan, LI Qingxun, ZHONG Haijun, HU Xiaowei, HE Shuai
Received:
2024-07-23
Revised:
2024-08-14
Online:
2024-12-06
Published:
2024-11-20
Contact:
WANG Yue
王月(), 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅
通讯作者:
王月
作者简介:
王月(1990—),女,博士,高级工程师,研究方向为氢氨能源、燃料电池。E-mail:wangyue010@petrochina.com.cn。
基金资助:
CLC Number:
WANG Yue, ZHANG Xuerui, SONG Xiwen, CHEN Boyan, LI Qingxun, ZHONG Haijun, HU Xiaowei, HE Shuai. Overview and prospect of ammonia synthesis with hydrogen produced via water electrolysis[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 180-188.
王月, 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1198
标准名称 | 内涵 |
---|---|
中国“绿氨” | 没有官方机构对“绿氨”进行统一界定。行业内一般将以绿氢为原料生产的氨作为绿氨,对生产过程中的碳排放没有要求 |
欧盟“可再生氨”(RFNBO)标准[ | 《可再生能源指令》(RED II,2018/2001),定义从可再生能源(生物质资源除外)中以热或电的形式产生氢气,继而生产的碳氢化合物、醇类和氨基燃料 |
日本“低碳氨”标准[ | 2023年6月,日本经济产业省发布修订版《氢能基本战略》,将低碳氨定义为生产链(“门到门”,含制氢过程)的碳排放强度低于0.84千克CO2/千克NH3 |
国际绿氢组织 | 2023年12月,国际绿氢组织(GH2)对绿氨标准予以更新,新的标准明确了绿氨的氢源是100%或者接近100%的可再生能源生产的绿氢,绿氨的温室气体排放强度标准(12个月的平均值)不能高于0.3千克二氧化碳当量/千克氨[ |
国际可再生能源署(IRENA)和氨能协会“可再生氨” | 2022年发布的《创新展望:可再生氨》提出,用可再生电力电解制氢生产的氨是可再生氨,对二氧化碳排放未作说明[ |
标准名称 | 内涵 |
---|---|
中国“绿氨” | 没有官方机构对“绿氨”进行统一界定。行业内一般将以绿氢为原料生产的氨作为绿氨,对生产过程中的碳排放没有要求 |
欧盟“可再生氨”(RFNBO)标准[ | 《可再生能源指令》(RED II,2018/2001),定义从可再生能源(生物质资源除外)中以热或电的形式产生氢气,继而生产的碳氢化合物、醇类和氨基燃料 |
日本“低碳氨”标准[ | 2023年6月,日本经济产业省发布修订版《氢能基本战略》,将低碳氨定义为生产链(“门到门”,含制氢过程)的碳排放强度低于0.84千克CO2/千克NH3 |
国际绿氢组织 | 2023年12月,国际绿氢组织(GH2)对绿氨标准予以更新,新的标准明确了绿氨的氢源是100%或者接近100%的可再生能源生产的绿氢,绿氨的温室气体排放强度标准(12个月的平均值)不能高于0.3千克二氧化碳当量/千克氨[ |
国际可再生能源署(IRENA)和氨能协会“可再生氨” | 2022年发布的《创新展望:可再生氨》提出,用可再生电力电解制氢生产的氨是可再生氨,对二氧化碳排放未作说明[ |
项目名称 | 地点 | 风电 规模 /兆瓦 | 光伏 规模 /兆瓦 | 储能 功率 /兆瓦 | 储能 容量 /兆瓦时 | 制氢方法 | 制氢规模 /标方·小时-1 | 储氢量 /万标方 | 储氢 时间 /小时 | 制氨 规模 /万吨·年-1 | 合成氨工艺 |
---|---|---|---|---|---|---|---|---|---|---|---|
中电建赤峰风光制氢一体化 | 内蒙古 | 290 | 200 | 73.5 | 73.5 | ALK | 33000 | 16.5 | 5 | — | — |
中能建巴彦淖尔绿电制氢制氨 | 内蒙古 | 210 | 50 | 39 | 39 | — | 约14045 | — | — | 5.7 | — |
国家能源集团国华投资合成氨 | 沧州 | — | — | — | — | ALK | 26000 | — | — | 10 | 多稳态柔性 |
国家能源集团国华投资绿氨 | 内蒙古 | 800 | 300 | — | — | — | — | — | — | 30 | — |
国家电投集团吉林大安风光制绿氢合成氨 | 吉林 | 700 | 100 | 40 | 80 | ALK与PEM制氢规模3.6/1 | 46000 | 6 | 1.3 | 18 | 南京国昌化工,高温高压 |
冀中新能源绿氨 | 内蒙古 | 1250 | 1150 | — | — | — | 192000 | 100.8 | 5.25 | 50 | — |
华电赤峰巴林左旗风光制氢一体化 | 内蒙古 | 500 | — | — | ALK | 50000 | 36 | 7.2 | 10 | — | |
辽宁华电铁岭离网储能制氢 | 辽宁 | 25 | — | — | 5 | ALK | 3000 | — | — | 20 | — |
中国氢能有限公司绿氨项目 | 内蒙古 | — | 400 | — | — | — | 约13062 | — | — | 5 | 低温低压 |
水木明拓国际氢能冶金化工产业示范区项目 | 内蒙古 | 1500 | — | — | — | — | 150000 | — | — | 65.7 | 托普索全动态 合成氨 |
三一重工乌拉特中旗风光氢储氨一体化 | 内蒙古 | 400 | 100 | 40 | 80 | — | 约50562 | — | — | 15 | — |
远景兴安盟零碳氢氨 | 内蒙古 | 1250 | 30 | 30 | — | 约78933 | — | — | 30 | — | |
安达市天楹风光储氢氨醇一体化项目 | 黑龙江 | 1400 | 400 | 140 | 280 | — | 140449 | — | — | 3.8 | — |
项目名称 | 地点 | 风电 规模 /兆瓦 | 光伏 规模 /兆瓦 | 储能 功率 /兆瓦 | 储能 容量 /兆瓦时 | 制氢方法 | 制氢规模 /标方·小时-1 | 储氢量 /万标方 | 储氢 时间 /小时 | 制氨 规模 /万吨·年-1 | 合成氨工艺 |
---|---|---|---|---|---|---|---|---|---|---|---|
中电建赤峰风光制氢一体化 | 内蒙古 | 290 | 200 | 73.5 | 73.5 | ALK | 33000 | 16.5 | 5 | — | — |
中能建巴彦淖尔绿电制氢制氨 | 内蒙古 | 210 | 50 | 39 | 39 | — | 约14045 | — | — | 5.7 | — |
国家能源集团国华投资合成氨 | 沧州 | — | — | — | — | ALK | 26000 | — | — | 10 | 多稳态柔性 |
国家能源集团国华投资绿氨 | 内蒙古 | 800 | 300 | — | — | — | — | — | — | 30 | — |
国家电投集团吉林大安风光制绿氢合成氨 | 吉林 | 700 | 100 | 40 | 80 | ALK与PEM制氢规模3.6/1 | 46000 | 6 | 1.3 | 18 | 南京国昌化工,高温高压 |
冀中新能源绿氨 | 内蒙古 | 1250 | 1150 | — | — | — | 192000 | 100.8 | 5.25 | 50 | — |
华电赤峰巴林左旗风光制氢一体化 | 内蒙古 | 500 | — | — | ALK | 50000 | 36 | 7.2 | 10 | — | |
辽宁华电铁岭离网储能制氢 | 辽宁 | 25 | — | — | 5 | ALK | 3000 | — | — | 20 | — |
中国氢能有限公司绿氨项目 | 内蒙古 | — | 400 | — | — | — | 约13062 | — | — | 5 | 低温低压 |
水木明拓国际氢能冶金化工产业示范区项目 | 内蒙古 | 1500 | — | — | — | — | 150000 | — | — | 65.7 | 托普索全动态 合成氨 |
三一重工乌拉特中旗风光氢储氨一体化 | 内蒙古 | 400 | 100 | 40 | 80 | — | 约50562 | — | — | 15 | — |
远景兴安盟零碳氢氨 | 内蒙古 | 1250 | 30 | 30 | — | 约78933 | — | — | 30 | — | |
安达市天楹风光储氢氨醇一体化项目 | 黑龙江 | 1400 | 400 | 140 | 280 | — | 140449 | — | — | 3.8 | — |
实现时间 | 目前 | 2030年 | 2050年 |
---|---|---|---|
生产 | |||
灰氨产量/(百万吨/年) | 67.6 | 73 | 17 |
灰氨市场价/(元/吨) | 3000~5000 | 3000~5000 | 3000~5000 |
蓝氨产量/(百万吨/年) | 0 | 3 | 23 |
蓝氨成本价/(元/吨) | 1800~3240 | 1800~3240 | 1800~3240 |
绿氨产量/(百万吨/年) | 0 | 3 | 189 |
绿氨成本价/(元/吨) | 7900 | 2520~6840 | 2520~4500 |
应用 | |||
化肥/(百万吨/年) | 58.1 | 59 | 100 |
脱硝、制冷、树脂等用途/(百万吨/年) | 9.5 | 10 | 22 |
船燃/(百万吨/年) | 0 | 10 | 50 |
氢载体/(百万吨/年) | 0 | 1 | 42 |
发电/(百万吨/年) | 0 | 0 | 15 |
小计/(百万吨/年) | 67.6 | 80 | 234 |
产值/亿元 | 2704 | 3173 | 7900 |
实现时间 | 目前 | 2030年 | 2050年 |
---|---|---|---|
生产 | |||
灰氨产量/(百万吨/年) | 67.6 | 73 | 17 |
灰氨市场价/(元/吨) | 3000~5000 | 3000~5000 | 3000~5000 |
蓝氨产量/(百万吨/年) | 0 | 3 | 23 |
蓝氨成本价/(元/吨) | 1800~3240 | 1800~3240 | 1800~3240 |
绿氨产量/(百万吨/年) | 0 | 3 | 189 |
绿氨成本价/(元/吨) | 7900 | 2520~6840 | 2520~4500 |
应用 | |||
化肥/(百万吨/年) | 58.1 | 59 | 100 |
脱硝、制冷、树脂等用途/(百万吨/年) | 9.5 | 10 | 22 |
船燃/(百万吨/年) | 0 | 10 | 50 |
氢载体/(百万吨/年) | 0 | 1 | 42 |
发电/(百万吨/年) | 0 | 0 | 15 |
小计/(百万吨/年) | 67.6 | 80 | 234 |
产值/亿元 | 2704 | 3173 | 7900 |
1 | 杨卫胜, 王月, 李庆勋. “双碳” 目标下氢能高质量发展思考及建议[J]. 石油科技论坛, 2023, 42(2): 12-20, 39. |
YANG Weisheng, WANG Yue, LI Qingxun. Analysis and suggestions on high-quality hydrogen energy development under carbon peak and carbon neutrality goals[J]. Petroleum Science and Technology Forum, 2023, 42(2): 12-20, 39. | |
2 | WANG Yue, LOU Shujie, HU Xiaowei. Research on the approach and path to harness ammonia in hydrogen energy[J]. Petroleum forum, 2024 (1): 57-65. |
3 | DECHANY Antoine, VAN GEEM Kevin, PROOST Joris. Process implications of electrifying ammonia production[J]. Current Opinion in Chemical Engineering, 2023, 40: 100915. |
4 | BUFFI M, SCARLAT N, HURTIG O, et al. Clean energy technology observatory: Renewable fuels of non-biological origin in the European Union[R]. Status Report on Technology Development, Trends, Value Chains and Markets, Luxembourg, 2022. |
5 | 日本经济产业省. 日本氢基本战略[EB/OL]. (2023-06-06) [2024-07-22]. . |
Ministry of Economy, Trade and Industry of Japan. Japan's basic hydrogen strategy[EB/OL]. (2023-06-06) [2024-07-22]. . | |
6 | ORGANISATION G H. Green Hydrogen Standard 2.0. The global standard for green hydrogen and green hydrogen derivatives[R/OL]. (2023-12-03) [2024-07-23]. . |
7 | International Renewable energy agency. Innovation outlook renewable ammonia[R/OL]. (2022-05-19) [2024-07-23]. . |
8 | ROUWENHORST Kevin H R, TRAVIS Anthony S, LEFFERTS Leon. 1921-2021: A century of renewable ammonia synthesis[J]. Sustainable Chemistry, 2022, 3(2): 149-171. |
9 | US Department of Energy. National clean hydrogen strategy and roadmap[R/OL]. (2023-08-18) [2024-07-23]. . |
10 | US Department of Energy. Renewable energy to fuels through utilization of energy-dense liquids[R/OL]. (2016-04-26) [2024-07-23]. . |
11 | COMMISSION E. REPowerEU plan[R/OL]. (2022-05-18) [2024-07-23]. . |
12 | LEE Boreum, Dongjun LIM, LEE Hyunjun, et al. Which water electrolysis technology is appropriate? : Critical insights of potential water electrolysis for green ammonia production[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110963. |
13 | 中国电力企业联合会 2023—2024年度全国电力供需形势分析预测报告[EB/OL]. (2024-01-30) [2024-07-22]. . |
China Electricity Council. 2023—2024 National power supply and demand situation analysis and forecast report[EB/OL]. (2024-01-30) [2024-07-22]. . | |
14 | 国家发展改革委, 工业和信息化部, 生态环境部, 市场监管总局, 国家能源局. 工业重点领域能效标杆水平和基准水平(2023年版)[EB/OL]. (2023-06-06) [2024-07-23]. . |
National Development and Reform Commission, Ministry of Industry and Information Technology, Ministry of Ecology and Environment, State Administration for Market Regulation, National Energy Administration. Benchmarking and baseline levels of energy efficiency in key industrial sectors[EB/OL]. (2023-06-06) [2024-07-23]. . | |
15 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 常规燃煤发电机组单位产品能源消耗限额: [S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. The norm of energy consumption per unit product of general coal-fired power set: [S]. Beijing: China Standard Press, 2017. | |
16 | 中华人民共和国工业和信息化部. 合成氨行业规范条件[EB/OL]. (2023-10-23) [2024-07-22]. . |
Ministry of Industry and Information Technology of the People's Republic of China. Conditions for the standardization of the synthetic ammonia industry[EB/OL]. (2023-10-23) [2024-07-22]. . | |
17 | ZHENG Jianyun, JIANG Li, Yanhong LYU, et al. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future[J]. Energy & Environmental Materials, 2022, 5(2): 452-457. |
18 | 中华人民共和国国家发展和改革委员会. “十四五”新型储能发展实施方案[EB/OL]. (2022-03-21) [2024-07-22]. . |
National Development and Reform Commission. Implementation plan for the development of new energy storage during the 14th Five-Year Plan Period[EB/OL]. (2022-03-21) [2024-07-22]. . | |
19 | 国家发展改革委, 工业和信息化部, 生态环境部, 国家能源局. 高耗能行业节能降碳改造升级实施指南[EB/OL]. (2023-10-24) [2024-07-22]. . |
National Development and Reform Commission, Ministry of Industry and Information Technology, Ministry of Ecology and Environment, National Energy Administration. Implementation guidelines for energy-saving and carbon-reducing transformation and upgrading in energy-intensive industries[EB/OL]. (2023-10-24) [2024-07-22]. . | |
20 | 国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23) [2024-07-22]. . |
National Development and Reform Commission, National Energy Administration. Medium- and long-term plan for the development of the hydrogen energy industry (2021—2035)[EB/OL]. (2023-10-24) [2024-07-22]. . | |
21 | 工业和信息化部, 国家发展改革委, 生态环境部. 工业领域碳达峰实施方案[EB/OL]. (2022-07-07) [2024-07-22]. . |
Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Ecology and Environment. Implementation plan for achieving carbon emission peak in the industrial sector[EB/OL]. (2022-07-07) [2024-07-22]. . | |
22 | 国家发改委, 国家能源局. 煤电低碳化改造建设行动方案(2024—2027年)[EB/OL]. (2024-07-15) [2024-07-22]. . |
National Development and Reform Commission, National Energy Administration. Action plan for the construction of low-carbon retrofitting of coal-fired power plants (2024—2027)[EB/OL]. (2024-07-15) [2024-07-22]. . | |
23 | NAYAK-LUKE R M, CESARO Z, BAñARES-ALCáNTARA R. Techno-economic challenges of green ammonia as an energy vector[M]. London: Elsevier, 2020: 27-39. |
24 | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
JI Xu, ZHOU Buxiang, HE Ge, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
25 | 吉旭, 林今, 聂李红, 等. 适用可再生能源不确定特性的合成氨多稳态柔性工艺技术[J]. 洁净煤技术, 2024, 30(2): 23-35. |
JI Xu, LIN Jin, NIE Lihong, et al. Multistable-flexible ammonia process adapted to renewable energy[J]. Clean Coal Technology, 2024, 30(2): 23-35. | |
26 | VERLEYSEN Kevin, PARENTE Alessandro, CONTINO Francesco. How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)[J]. Energy, 2021, 232: 121016. |
27 | 曾悦, 王月, 张学瑞, 等. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
ZENG Yue, WANG Yue, ZHANG Xuerui, et al. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389. |
[1] | WANG Yuhua, ZHOU Xue, GU Chuantao. Recent advances in regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 391-402. |
[2] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[3] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[4] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[5] | CHEN Keyu, XU Jinxin, WU Guibo, YANG Zhe, CHEN Jiahong, CHEN Yongli. Current situation and development prospect of green ammonia industry [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. |
[6] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[7] | DING Kang, HE Junqiao, CHEN Yuanjie, YANG Xiazhen, LIU Huazhang, HUO Chao. Effect of hydrochloric acid treatment on catalytic performance of Ru/Ba-MgO catalyst template cotton fiber [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 962-970. |
[8] | ZHANG Wentao, ZHOU Jiahui, ZHANG Runzhi, WANG Luojia, XU Gang. Optimization strategy of wind and solar hydrogen production alkaline electrolyzer cluster considering energy consumption characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6119-6128. |
[9] | FENG Kai, MENG Hao, YANG Yusen, WEI Min. Research progress on catalysts for hydrogen production by methanol steam reforming [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5498-5516. |
[10] | ZENG Yue, WANG Yue, ZHANG Xuerui, SONG Xiwen, XIA Bowen, CHEN Ziqi. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389. |
[11] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[12] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[13] | ZHOU Jiali, MA Ziran, LI Ge, ZHAO Chunlin, WANG Hongyan, WANG Lei. Research progress on anti-poisoning of SCR catalysts in flue gas of coal and renewable fuel co-fired power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6286-6300. |
[14] | YU Feng. Reflection and prospects on N1 chemistry [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6136-6140. |
[15] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |