Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4909-4924.DOI: 10.16085/j.issn.1000-6613.2023-1440
• Industrial catalysis • Previous Articles
LIU Zhentao(), MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong()
Received:
2023-08-18
Revised:
2023-10-31
Online:
2024-09-30
Published:
2024-09-15
Contact:
WANG Xilong
刘振涛(), 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙()
通讯作者:
王喜龙
作者简介:
刘振涛(2000—),男,博士研究生,研究方向为清洁油品催化剂制备。E-mail:liuzhentao1222@163.com。
基金资助:
CLC Number:
LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924.
刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1440
编号 | 催化剂 | 拓扑结构 | 反应物 | 产物收率/% | 异正比 | 参考文献 |
---|---|---|---|---|---|---|
1 | Ni/ZSM-5 | MFI | 油酸 | 1.7 | [ | |
2 | Pt/SAPO-11 | AEL | 麻风树油 | 0.75 | [ | |
3 | NiMo/USY@Al-SBA-15 | — | 废食用油 | 2.7 | [ | |
4 | Ni/modified β | BEA | 棕榈油 | 2.61 | [ | |
5 | Ni/Meso-Y | FAU | 微藻油 | 0.87 | [ | |
6 | Ni/Meso-Y | FAU | 废食用油 | — | [ | |
7 | NiAg/SAPO-11 | AEL | 蓖麻油 | 6.8 | [ | |
8 | Ni/γ-Al2O3 | — | 油酸 | 2.7 | [ | |
9 | Pt/ZSM-22 | TON | 小桐子油脱氧产物 | 7.55 | [ | |
10 | Ni/SAPO-34 | CHA | 棕榈油 | — | [ |
编号 | 催化剂 | 拓扑结构 | 反应物 | 产物收率/% | 异正比 | 参考文献 |
---|---|---|---|---|---|---|
1 | Ni/ZSM-5 | MFI | 油酸 | 1.7 | [ | |
2 | Pt/SAPO-11 | AEL | 麻风树油 | 0.75 | [ | |
3 | NiMo/USY@Al-SBA-15 | — | 废食用油 | 2.7 | [ | |
4 | Ni/modified β | BEA | 棕榈油 | 2.61 | [ | |
5 | Ni/Meso-Y | FAU | 微藻油 | 0.87 | [ | |
6 | Ni/Meso-Y | FAU | 废食用油 | — | [ | |
7 | NiAg/SAPO-11 | AEL | 蓖麻油 | 6.8 | [ | |
8 | Ni/γ-Al2O3 | — | 油酸 | 2.7 | [ | |
9 | Pt/ZSM-22 | TON | 小桐子油脱氧产物 | 7.55 | [ | |
10 | Ni/SAPO-34 | CHA | 棕榈油 | — | [ |
项目 | 尺寸/nm |
---|---|
直链烷烃 | 0.45 |
单支链烷烃 | 0.58~0.6 |
双支链烷烃 | 0.61~0.63 |
三支链烷烃 | 0.65 |
八元环(菱沸石) | 0.38×0.38 |
十元环(ZSM-22) | 0.45×0.54 |
十二元环(Y) | 0.74×0.74 |
项目 | 尺寸/nm |
---|---|
直链烷烃 | 0.45 |
单支链烷烃 | 0.58~0.6 |
双支链烷烃 | 0.61~0.63 |
三支链烷烃 | 0.65 |
八元环(菱沸石) | 0.38×0.38 |
十元环(ZSM-22) | 0.45×0.54 |
十二元环(Y) | 0.74×0.74 |
1 | ZHANG Chi, HUI Xin, LIN Yuzhen, et al. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120-138. |
2 | WEI Hongjian, LIU Wenzhi, CHEN Xinyu, et al. Renewable bio-jet fuel production for aviation: A review[J]. Fuel, 2019, 254: 115599. |
3 | ZHANG Yajing, BI Peiyan, WANG Jicong, et al. Production of jet and diesel biofuels from renewable lignocellulosic biomass[J]. Applied Energy, 2015, 150: 128-137. |
4 | Mathias SNÅRE, Iva KUBIČKOVÁ, Päivi MÄKI-ARVELA, et al. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5708-5715. |
5 | HSU Hsin-Wei, CHANG Yu-Hsuan, WANG Weicheng. Techno-economic analysis of used cooking oil to jet fuel production under uncertainty through three-, two-, and one-step conversion processes[J]. Journal of Cleaner Production, 2021, 289: 125778. |
6 | LIN Chenghan, WANG Weicheng. Direct conversion of glyceride-based oil into renewable jet fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110109. |
7 | Elaine Siew Kuan WHY, Hwai Chyuan ONG, LEE Hwei Voon, et al. Renewable aviation fuel by advanced hydroprocessing of biomass: Challenges and perspective[J]. Energy Conversion and Management, 2019, 199: 112015. |
8 | DÍAZ-PÉREZ Manuel Antonio, SERRANO-RUIZ Juan Carlos. Catalytic production of jet fuels from biomass[J]. Molecules, 2020, 25(4): 802. |
9 | LIU Siyang, ZHU Qingqing, GUAN Qingxin, et al. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts[J]. Bioresource Technology, 2015, 183: 93-100. |
10 | CHOI Il-Ho, HWANG Kyung-Ran, HAN Jeong-Sik, et al. The direct production of jet-fuel from non-edible oil in a single-step process[J]. Fuel, 2015, 158: 98-104. |
11 | LI Tao, CHENG Jun, HUANG Rui, et al. Hydrocracking of palm oil to jet biofuel over different zeolites[J]. International Journal of Hydrogen Energy, 2016, 41(47): 21883-21887. |
12 | LI Tao, CHENG Jun, HUANG Rui, et al. Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst[J]. Bioresource Technology, 2015, 197: 289-294. |
13 | CHINTAKANAN Pachara, VITIDSANT Tharapong, REUBROYCHAROEN Prasert, et al. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends[J]. Fuel, 2021, 293: 120472. |
14 | CHENG Jun, ZHANG Ze, ZHANG Xi, et al. Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1650-1658. |
15 | RABAEV Moshe, LANDAU Miron V, Roxana VIDRUK-NEHEMYA, et al. Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics[J]. Fuel, 2015, 161: 287-294. |
16 | JEONG Hwiram, BATHULA Hari Babu, KIM Tae Wan, et al. Superior long-term stability of a mesoporous alumina-supported Pt catalyst in the hydrodeoxygenation of palm oil[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1193-1202. |
17 | KIM Myoung Yeob, KIM Jae-Kon, LEE Mi-Eun, et al. Maximizing biojet fuel production from triglyceride: Importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps[J]. ACS Catalysis, 2017, 7(9): 6256-6267. |
18 | Jackson Hwa Keen LIM, GAN Yongyang, Hwai Chyuan ONG, et al. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111396. |
19 | 任申勇, 黄志岗, 孙华阳, 等. 通过调变SAPO-11的孔道和酸性制备高选择性加氢裂化/异构化催化剂[J]. 分子催化, 2022, 36(6): 534-546. |
REN Shenyong, HUANG Zhigang, SUN Huayang, et al. Preparation of highly selective hydrocracking/hydroisomerization catalyst for n-hexadecane by tuning porosity and acidity of SAPO-11[J]. Journal of Molecular Catalysis (China), 2022, 36(6): 534-546. | |
20 | 焦凡凡, 毛以朝, 龙湘云, 等. 钾改性Beta分子筛Brönsted酸性能对十氢萘加氢异构化及加氢裂化反应的影响[J]. 石油学报(石油加工), 2022, 38(4): 760-770. |
JIAO Fanfan, MAO Yichao, LONG Xiangyun, et al. Effect of various Brönsted acidity of the beta zeolite modified by K+ on hydro-isomerization and hydrocracking of decalin[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(4): 760-770. | |
21 | FENG Fuxiang, NIU Xiaopo, WANG Li, et al. TEOS-modified Ni/ZSM-5 nanosheet catalysts for hydroconversion of oleic acid to high-performance aviation fuel: Effect of acid spatial distribution[J]. Microporous and Mesoporous Materials, 2020, 291: 109705. |
22 | LI Xingyong, CHEN Yubao, HAO Yajie, et al. Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology[J]. Renewable Energy, 2019, 139: 551-559. |
23 | ZHANG Zongwei, WANG Qingfa, CHEN Hao, et al. Hydroconversion of waste cooking oil into bio-jet fuel over a hierarchical NiMo/USY@Al-SBA-15 zeolite[J]. Chemical Engineering & Technology, 2018, 41(3): 590-597. |
24 | WARODOM Hunsiri, NICHABOON Chaihad, CHAWALIT Ngamcharussrivichai, et al. Branched-chain biofuels derived from hydroisomerization of palm olein using Ni/modified beta zeolite catalysts for biojet fuel production[J]. Fuel Processing Technology, 2023, 248: 107825. |
25 | CHENG Jun, ZHANG Ze, ZHANG Xi, et al. Continuous hydroprocessing of microalgae biodiesel to jet fuel range hydrocarbons promoted by Ni/hierarchical mesoporous Y zeolite catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11765-11773. |
26 | FENG Fuxiang, SHANG Zeyu, WANG Li, et al. Structure-sensitive hydro-conversion of oleic acid to aviation-fuel-range-alkanes over alumina-supported nickel catalyst[J]. Catalysis Communications, 2020, 134: 105842. |
27 | 韩京京, 谭涓, 刘靖, 等. 小晶粒ZSM-22的可控合成及其催化长链正构生物烷烃制航空煤油性能[J]. 化工进展, 2022, 41(4): 1916-1924. |
HAN Jingjing, TAN Juan, LIU Jing, et al. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. | |
28 | RESTREPO-GARCIA Jonatan R, Diana GOMORA-HERRERA, Pablo TORRES-MANCERA, et al. Hydro-co-processing of a jatropha oil and gas oil blend with a sulfided Ni-W catalyst supported on mesostructured materials Al(x)-SBA-15 type for cleaner hybrid diesel production: Effect of the Al/Si molar ratio[J]. Fuel, 2023, 351: 128890. |
29 | HAO Nanjing, TANG Fangqiong, LI Laifeng. MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications[J]. Microporous and Mesoporous Materials, 2015, 218: 223-227. |
30 | DU Xiangze, LI Dan, XIN Hui, et al. The conversion of jatropha oil into jet fuel on NiMo/Al-MCM-41 catalyst: Intrinsic synergic effects between Ni and Mo[J]. Energy Technology, 2019, 7(5): 1800809. |
31 | ZOU Yutong, XIAO Chengkun, LI Dongze, et al. Dendritic micro-mesoporous composites via nano-assembly strategy towards high-efficiency catalysts for hydrodesulfurization of dibenzothiophenes[J]. Journal of Catalysis, 2023, 427: 115092. |
32 | LEI Xiaomei, DU Xiangze, XIN Hui, et al. Chemical-switching strategy for the production of green biofuel on NiCo/MCM-41 catalysts by tuning atmosphere [J]. Fuel, 2022, 315: 123118. |
33 | LAHIJANI Pooya, MOHAMMADI Maedeh, MOHAMED Abdul Rahman, et al. Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: A review of recent progress[J]. Energy Conversion and Management, 2022, 268: 115956. |
34 | WANG Tinghu, ZHANG Wenjing, LI Yuzhi, et al. Quantitative synergy between metal and acid centers over the Ni/Beta bifunctional catalyst for methyl laurate hydrodeoxygenation to bio-jet fuel[J]. Fuel Processing Technology, 2023, 241: 107602. |
35 | WANG Wuyu, ZHANG Xinghua, JIANG Zhenjing, et al. Controllably produce renewable jet fuel with high-density and low-freezing points from lignocellulose-derived cyclopentanone[J]. Fuel, 2022, 321: 124114. |
36 | ZHANG Jimei, SHI Yanchun, CAO Hongbin, et al. Conversion of palmitic acid to jet fuel components over Mo/H-ZSM-22 bi-functional catalysts with high carbon reservation[J]. Applied Catalysis A: General, 2020, 608: 117847. |
37 | SHAHINUZZAMAN M, YAAKOB Zahira, AHMED Yunus. Non-sulphide zeolite catalyst for bio-jet-fuel conversion[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 1375-1384. |
38 | GALADIMA Ahmad, MASUDI Ahmad, MURAZA Oki. Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review[J]. Molecular Catalysis, 2022, 523: 112131. |
39 | CHEN Liangguang, LI Huiwen, FU Junying, et al. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst[J]. Catalysis Today, 2016, 259: 266-276. |
40 | SEYED MOUSAVI Seyed Amir Hossein, SADRAMELI Seyed Mojtaba, SAEEDI DEHAGHANI Amir Hossein. Catalytic pyrolysis of municipal plastic waste over nano MIL-53 (Cu) derived@zeolite Y for gasoline, jet fuel, and diesel range fuel production[J]. Process Safety and Environmental Protection, 2022, 164: 449-467. |
41 | 李涛, 张青程. 微藻油脂一步联产航空煤油范围正构烷烃和芳烃[J]. 中国油脂, 2021, 46(7): 64-68. |
LI Tao, ZHANG Qingcheng. One step co-production of jet fuel range n-alkanes and aromatic hydrocarbons from microalgal lipids[J]. China Oils and Fats, 2021, 46(7): 64-68. | |
42 | WANG Zijian, ZHANG Rongxin, WANG Jieguang, et al. Hierarchical zeolites obtained by alkaline treatment for enhanced n-pentane catalytic cracking[J]. Fuel, 2022, 313: 122669. |
43 | ZHANG Minhua, QIN Yunan, JIANG Haoxi, et al. Protective desilication of β zeolite: A mechanism study and its application in ethanol-acetaldehyde to 1,3-butadiene[J]. Microporous and Mesoporous Materials, 2021, 326: 111359. |
44 | WANG Yu, WANG Pu, LU Xuefeng, et al. Construction of mesoporous Ru@ZSM-5 catalyst for dichloromethane degradation: Synergy between acidic sites and redox centres[J]. Fuel, 2023, 346: 128337. |
45 | ZHENG Yixuan, NING Weiwei, WANG Quanhua, et al. Hierarchical ZSM-5 zeolite using amino acid as template: Avoiding phase separation and fabricating an ultra-small mesoporous structure[J]. Microporous and Mesoporous Materials, 2023, 355: 112578. |
46 | WANG Shuai, JIANG Xiaoqing, NIE Genkuo, et al. Trash into treasure: Nano ZSM-5 catalyst for cracking waste cooking oil to bio-gasoline with enhanced selectivity[J]. Fuel Processing Technology, 2023, 242: 107666. |
47 | HAGHIGHI Maryam, BAKHSHI Soodabeh, Somayeh GOONEH-FARAHANI. Enhanced catalytic cracking of tetradecane over nano-structure porous ZSM-5 and ZSM-11 catalysts[J]. Materials Science and Engineering: B, 2021, 263: 114894. |
48 | ANIS Shaheen Fatima, SINGARAVEL Gnanapragasam, HASHAIKEH Raed. NiW/nano zeolite Y catalysts for n-heptane hydrocracking[J]. Materials Chemistry and Physics, 2018, 212: 87-94. |
49 | IKUNO Takaaki, CHAIKITTISILP Watcharop, LIU Zhendong, et al. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process[J]. Journal of the American Chemical Society, 2015, 137(45): 14533-14544. |
50 | Manal AL-EID, DING Lianhui, SALEEM Qasim, et al. A facile method to synthesize hierarchical nano-sized zeolite beta[J]. Microporous and Mesoporous Materials, 2019, 279: 99-106. |
51 | BOSNAR Sanja, Vladislav RAC, Dušan STOŠIĆ, et al. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study[J]. Microporous and Mesoporous Materials, 2022, 329: 111534. |
52 | ZHANG Miao, CHEN Yujing, WANG Lei, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
53 | LI Yi, SUN Junhao, WEI Jie, et al. Cascade hydrogenation of n-C16 to produce jet fuel over tandem catalysts of modified ZSM-22[J]. Journal of Industrial and Engineering Chemistry, 2022, 111: 88-97. |
54 | Federico JIMÉNEZ-CRUZ, LAREDO Georgina C. Molecular size evaluation of linear and branched paraffins from the gasoline pool by DFT quantum chemical calculations[J]. Fuel, 2004, 83(16): 2183-2188. |
55 | LI Xingyong, FAN Qiyuan, WU Yankun, et al. Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: Effect of in situ isomorphic substitution of transition metals and synergy of Pt x Sn y alloy[J]. Chemical Engineering Journal, 2023, 452: 139528. |
56 | LI Xingyong, WANG Qi, CHEN Jinlei, et al. One-step hydrotreatment of inedible oil for production the second-generation biofuel over Pt-Sn/SAPO-11 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105121. |
57 | XING Guanhua, LIU Siyang, GUAN Qingxin, et al. Investigation on hydroisomerization and hydrocracking of C15—C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis Today, 2019, 330: 109-116. |
58 | Päivi MÄKI-ARVELA, Mark MARTÍNEZ-KLIMOV, MURZIN Dmitry Yu. Hydroconversion of fatty acids and vegetable oils for production of jet fuels[J]. Fuel, 2021, 306: 121673. |
59 | CHEN Ning, REN Yuxiong, QIAN Eika W. Elucidation of the active phase in PtSn/SAPO-11 for hydrodeoxygenation of methyl palmitate[J]. Journal of Catalysis, 2016, 334: 79-88. |
60 | 刘晓龙, 王珉鑫, 马靖烨, 等. 介孔Pt/La@SAPO-11催化油酸脱羧制备C8~C17烷烃的研究[J]. 现代化工, 2022, 42(12): 154-160. |
LIU Xiaolong, WANG Minxin, MA Jingye, et al. Study on mesoporous Pt/La@SAPO-11 catalyst for decarboxylation of oleic acid to C8—C17 alkanes[J]. Modern Chemical Industry, 2022, 42(12): 154-160. | |
61 | 郝亚杰, 陈玉保, 刘强, 等. Pt/SAPO-11催化麻疯树油一步加氢制备生物航空煤油工艺条件的研究[J]. 中国油脂, 2017, 42(6): 110-114. |
HAO Yajie, CHEN Yubao, LIU Qiang, et al. Preparation of biological aviation kerosene from Jatropha curcas oil by one-step hydrogenation with Pt/SAPO-11 as catalyst[J]. China Oils and Fats, 2017, 42(6): 110-114. | |
62 | 张文杰, 陈玉保, 刘莹, 等. Pt-La/SAPO-11催化剂一步加氢制备航空煤油及其反应过程探究[J]. 林产化学与工业, 2021, 41(5): 65-71. |
ZHANG Wenjie, CHEN Yubao, LIU Ying, et al. One-step hydrogenation of castor oil catalyzed by Pt-La/SAPO-11 catalyst for preparing of aviation kerosene[J]. Chemistry and Industry of Forest Products, 2021, 41(5): 65-71. | |
63 | CHEN Ning, GONG Shaofeng, SHIRAI Hisakazu, et al. Effects of Si/Al ratio and Pt loading on Pt/SAPO-11 catalysts in hydroconversion of Jatropha oil[J]. Applied Catalysis A: General, 2013, 466: 105-115. |
64 | CHEN Yukai, HSIEH Chung-Hung, WANG Weicheng. The production of renewable aviation fuel from waste cooking oil. Part Ⅱ: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products[J]. Renewable Energy, 2020, 157: 731-740. |
65 | ZHAO Xianhui, WEI Lin, CHENG Shouyun, et al. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels[J]. Catalysts, 2017, 7: 83. |
66 | BAGHERI Samira, JULKAPLI Nurhidayatullaili Muhd, HAMID Sharifah Bee Abd. Titanium dioxide as a catalyst support in heterogeneous catalysis[J]. The Scientific World Journal, 2014, 2014: 727496. |
67 | WANG Meng, HE Mingli, FANG Yunming, et al. The Ni-Mo/γ-Al2O3 catalyzed hydrodeoxygenation of FAME to aviation fuel[J]. Catalysis Communications, 2017, 100: 237-241. |
68 | ITTHIBENCHAPONG Vorranutch, SRIFA Atthapon, KAEWMEESRI Rungnapa, et al. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts[J]. Energy Conversion and Management, 2017, 134: 188-196. |
69 | Alattin ÇAKAN, KIREN Burcu, AYAS Nezihe. Hydrodeoxygenation of safflower oil over cobalt-doped metal oxide catalysts for bio-aviation fuel production[J]. Molecular Catalysis, 2023, 546: 113219. |
70 | 胡心悦, 陈平, 刘学军, 等. 正构生物烷烃在Pt/ZSM-5催化剂上选择性加氢裂化制备液体生物燃料[J]. 化工进展, 2015, 34(4): 1007-1013. |
HU Xinyue, CHEN Ping, LIU Xuejun, et al. Production of liquid biofuels: Normal bio-alkane selective hydrocracking over Pt/ZSM-5 catalysts[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1007-1013. | |
71 | NIU Xiaopo, ZHAO Rong, HAN Yunxi, et al. Highly dispersed platinum clusters anchored on hollow ZSM-5 zeolite for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. Fuel, 2022, 326: 125021. |
72 | TIAN Yajie, GUO Longhui, QIAO Congzhen, et al. Dynamics-driven tailoring of sub-nanometric Pt-Ni bimetals confined in hierarchical zeolite for catalytic hydrodeoxygenation[J]. Applied Catalysis B: Environmental, 2023, 336: 122945. |
73 | ZHANG Chunfei, ZHANG Zongwei, CHEN Hao, et al. Tuning hierarchical ZSM-5 for green jet fuel production from soybean oil via control of Pt location and grafted TPABr content[J]. Catalysis Communications, 2021, 155: 106288. |
74 | YANG Huiru, DU Xiangze, LEI Xiaomei, et al. Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining[J]. Applied Energy, 2021, 301: 117469. |
75 | DENG Qiang, PENG Honggen, YANG Zhenzhen, et al. A one-pot synthesis of high-density biofuels through bifunctional mesoporous zeolite-encapsulated Pd catalysts[J]. Applied Catalysis B: Environmental, 2023, 337: 122982. |
76 | CHEN Yubao, LI Xingyong, LIU Shijie, et al. Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8—C16 alkanes[J]. Industrial Crops and Products, 2020, 146: 112182. |
77 | SRIFA Atthapon, FAUNGNAWAKIJ Kajornsak, ITTHIBENCHAPONG Vorranutch, et al. Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel[J]. Chemical Engineering Journal, 2015, 278: 249-258. |
78 | ZHU Yanxia, ZHANG Ze, CHENG Jun, et al. Ni-BTC metal-organic framework loaded on MCM-41 to promote hydrodeoxygenation and hydrocracking in jet biofuel production[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3898-3908. |
79 | KHAN Saima, QURESHI Khan Muhammad, Andrew Ng KAY LUP, et al. Role of Ni-Fe/ZSM-5/SAPO-11 bifunctional catalyst on hydrodeoxygenation of palm oil and triolein for alternative jet fuel production[J]. Biomass and Bioenergy, 2022, 164: 106563. |
80 | COUMANS A E, HENSEN E J M. A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts[J]. Catalysis Today, 2017, 298: 181-189. |
81 | VERMA Deepak, RANA Bharat Singh, KUMAR Rohit, et al. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11[J]. Applied Catalysis A: General, 2015, 490: 108-116. |
82 | SHARMA R K, ANAND M, RANA B S, et al. Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts[J]. Catalysis Today, 2012, 198(1): 314-320. |
83 | TIWARI Rashmi, RANA Bharat S, KUMAR Rohit, et al. Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures[J]. Catalysis Communications, 2011, 12(6): 559-562. |
84 | ANAND Mohit, FAROOQUI Saleem Akthar, KUMAR Rakesh, et al. Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils[J]. Applied Catalysis A: General, 2016, 516: 144-152. |
85 | 王安杰, 王瑶, 遇治权, 等. 生物质油提质加氢脱氧催化剂研究进展[J]. 大连理工大学学报, 2016, 56(3): 321-330. |
WANG Anjie, WANG Yao, YU Zhiquan, et al. Advances in hydrodeoxygenation catalysts for upgrading bio-oils[J]. Journal of Dalian University of Technology, 2016, 56(3): 321-330. | |
86 | GOLUBEVA M A, ZAKHARYAN E M, MAXIMOV A L. Transition metal phosphides (Ni, Co, Mo, W) for hydrodeoxygenation of biorefinery products (a review)[J]. Petroleum Chemistry, 2020, 60(10): 1109-1128. |
87 | TOPALIAN Peter J, CARRILLO Bo A, COCHRAN Paul M, et al. Synthesis and hydrodesulfurization properties of silica-supported nickel-ruthenium phosphide catalysts[J]. Journal of Catalysis, 2021, 403: 173-180. |
88 | HU Di, LI Huiping, MEI Jinlin, et al. Ultrasmall particle sizes of walnut-like mesoporous silica nanospheres with unique large pores and tunable acidity for hydrogenating reaction[J]. Small, 2020, 16(29): e2002091. |
89 | SHAMANAEV Ivan V, SUVOROVA Anna O, GERASIMOV Evgeny Yu, et al. SRGO hydrotreating over Ni-phosphide catalysts on granulated Al2O3 [J]. Catalysis Today, 2021, 378: 24-32. |
90 | SHAMANAEV Ivan V, VLASOVA Evgenia N, SCHERBAKOVA Anastasia M, et al. Hydroconversion of methyl palmitate over Ni-phosphide catalysts on SAPO-11 and ZSM-5 composite supports[J]. Microporous and Mesoporous Materials, 2023, 359: 112667. |
91 | ROMERO Douglas E, RIGUTTO Marcello, HENSEN Emiel J M. Influence of the size, order and topology of mesopores in bifunctional Pd-containing acidic SBA-15 and M41S catalysts for n-hexadecane hydrocracking[J]. Fuel Processing Technology, 2022, 232: 107259. |
92 | TAN Qihang, CAO Yang, LI Jin. Prepared multifunctional catalyst Ni2P/Zr-SBA-15 and catalyzed Jatropha Oil to produce bio-aviation fuel[J]. Renewable Energy, 2020, 150: 370-381. |
93 | ZHANG Jingjing, ZHAO Chen. Development of a bimetallic Pd-Ni/HZSM-5 catalyst for the tandem limonene dehydrogenation and fatty acid deoxygenation to alkanes and arenes for use as biojet fuel[J]. ACS Catalysis, 2016, 6(7): 4512-4525. |
94 | 陈信华. 浸渍法制备活性组份不均匀分布催化剂的参数分析[J]. 石油化工, 1992, 21(8): 557-562. |
CHEN Xinhua. Parameter analysis of catalyst with uneven distribution of active components prepared by impregnation method[J]. Petrochemical Technology, 1992, 21(8): 557-562. | |
95 | YAN Penghui, MENSAH Jim, ADESINA Adesoji, et al. Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-deposition-precipitation for improved hydrodeoxygenation activity[J]. Applied Catalysis B: Environmental, 2020, 267: 118690. |
96 | SONG Wenji, LIU Yuanshuai, Eszter BARÁTH, et al. Synergistic effects of Ni and acid sites for hydrogenation and C—O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. |
97 | NARES Rubén, Jorge RAMÍREZ, Aída GUTIÉRREZ-ALEJANDRE, et al. Ni/Hβ-zeolite catalysts prepared by deposition-precipitation[J]. The Journal of Physical Chemistry B, 2002, 106(51): 13287-13293. |
98 | LIU Jiaojiao, ZHANG Huifang, LU Ningyue, et al. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1056-1064. |
99 | YANG Lingmei, XING Shiyou, SUN Hongzhe, et al. Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes[J]. Fuel Processing Technology, 2019, 187: 52-62. |
100 | ABUBAKAR Umar C, ALHOOSHANI Khalid R, SALEH Tawfik A. Effect of ultrasonication and chelating agents on the dispersion of NiMo catalysts on carbon for Hydrodesulphurization[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103811. |
101 | SUÁREZ-TORIELLO V A, SANTOLALLA-VARGAS C E, DE LOS REYES J A, et al. Influence of the solution pH in impregnation with citric acid and activity of Ni/W/Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404/405: 36-46. |
102 | YANG Lingmei, LUO Wen, LI Hui wen, et al. Catalytic oleic acid hydrotreating to bio-aviation fuel over highly dispersed Ni/SAPO-11 catalysts prepared by citric acid and ethylene glycol co-assistance impregnation[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107220. |
103 | CAO Chongjiang, YANG Guang, DUBAU Laetitia, et al. Highly dispersed Pt/C catalysts prepared by the charge enhanced dry impregnation method[J]. Applied Catalysis B: Environmental, 2014, 150/151: 101-106. |
104 | WONG A, LIU Q, GRIFFIN S, et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports[J]. Science, 2017, 358(6369): 1427-1430. |
105 | ZHU Xiaoru, CHO Hye-ran, PASUPONG Malini, et al. Charge-enhanced dry impregnation: A simple way to improve the preparation of supported metal catalysts[J]. ACS Catalysis, 2013, 3(4): 625-630. |
[1] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[2] | YAN Zhe, LIU Chang, WANG Fengxu, ZHOU Hongwang, LIU Xi, ZHAO Xuebing. Electrochemical reduction of CO2 coupled with oxidative conversion of biomass [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3310-3321. |
[3] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
[4] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[5] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[6] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[7] | SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259. |
[8] | JIAN Yating, YU Qiang, CHEN Xiaoyan, WANG Fan, WANG Zhongming, YUAN Zhenhong. Progress in the preparation of liquid biofuels from lignin [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 109-116. |
[9] | PENG Yuanting, WANG Ao, WEI Tong, LI Nanqi, LI Jian. Reforming of liquid bio-fuels for solid oxide fuel cell application [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2972-2979. |
[10] | GUO Dongwen, ZHAO Wenguang, LIU Xianxiang, YIN Dulin. Advances in catalytic conversion of biomass carbohydrates into biofuel 2,5-dimethylfuran [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2092-2108. |
[11] | ZHANG Cunsheng, LIU Yan, YANG Li, TIAN Yufei. Research progress of hexanol production through anaerobic fermentation of wasted industrial syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1604-1610. |
[12] | Tong WANG, Hualiang AN, Fang LI, Wei XUE, Yanji WANG. Research progress of the heterogeneous catalysts for 2,5-dimethylfuran synthesis via hydrogenolysis of 5-hydroxymethylfufural [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 824-834. |
[13] | Caixia LIAN, Ning LI, Wu JIANG, Hao MA, Han PENG. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation(HDO) of biomass oil [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. |
[14] | Jieping LIU, Qing GUO, Jie LIU, Feng TIAN, Xiaoyong FAN, Dong LI, Yong DAN, Quanjun FU, Zonggang DU, Wei HAN, Di SONG. Structural characterization and analysis of existent gum in coal-based aviation kerosene base oil [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3626-3634. |
[15] | Hongshen LI, Shizhong LI. Advances in research and application of vapor permeation for biofuel ethanol production [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1620-1631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |