Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 153-162.DOI: 10.16085/j.issn.1000-6613.2020-0260
• Industrial catalysis • Previous Articles Next Articles
Caixia LIAN1,2(), Ning LI1(), Wu JIANG1, Hao MA1, Han PENG1,2
Received:
2020-02-24
Online:
2020-06-29
Published:
2020-05-20
Contact:
Ning LI
练彩霞1,2(), 李凝1(), 蒋武1, 马浩1, 彭瀚1,2
通讯作者:
李凝
作者简介:
练彩霞(1995—),女,硕士研究生,研究方向为催化材料与多相催化技术。E-mail:基金资助:
CLC Number:
Caixia LIAN, Ning LI, Wu JIANG, Hao MA, Han PENG. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation(HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162.
练彩霞, 李凝, 蒋武, 马浩, 彭瀚. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0260
物理性质 | 生物质油 | 重质燃料油 |
---|---|---|
含水量(质量分数)/ % | 15~30 | 0.1 |
pH | 2.5 | — |
密度/g·mL-1 | 1.2 | 0.94 |
热值/MJ·kg-1 | 16~19 | 40 |
黏度(40℃)/Pa·s | 40~100 | 180 |
固体颗粒(焦炭)(质量分数)/% | 0.2~1 | 0.1 |
减压蒸馏残渣(质量分数)/% | 50 | 1 |
元素质量分数/% | ||
C | 54~58 | 85 |
H | 5.5~7.0 | 11 |
O | 35~40 | 1.0 |
N | 0~0.2 | 0.3 |
S | <0.23 | <4 |
物理性质 | 生物质油 | 重质燃料油 |
---|---|---|
含水量(质量分数)/ % | 15~30 | 0.1 |
pH | 2.5 | — |
密度/g·mL-1 | 1.2 | 0.94 |
热值/MJ·kg-1 | 16~19 | 40 |
黏度(40℃)/Pa·s | 40~100 | 180 |
固体颗粒(焦炭)(质量分数)/% | 0.2~1 | 0.1 |
减压蒸馏残渣(质量分数)/% | 50 | 1 |
元素质量分数/% | ||
C | 54~58 | 85 |
H | 5.5~7.0 | 11 |
O | 35~40 | 1.0 |
N | 0~0.2 | 0.3 |
S | <0.23 | <4 |
Pd催化剂(质量分数) | 反应物 | 反应条件/(℃/MPa) | 转化率/% | 选择性(烃类)/% | 参考文献 |
---|---|---|---|---|---|
1.92%Pd/SiO2 | 苯酚 | 300/1 | 7.0 | 8.1 | [ |
2.28%Pd/Al2O3 | 苯酚 | 300/1 | 7.5 | 14.2 | [ |
1.83%Pd/TiO2 | 苯酚 | 300/1 | 7.0 | 66.8 | [ |
2.24%Pd/ZrO2 | 苯酚 | 300/1 | 12.6 | 29.9 | [ |
2.44%Pd/CeO2 | 苯酚 | 300/1 | 9.0 | 4.9 | [ |
2.46%Pd/CeZrO2 | 苯酚 | 300/1 | 12.4 | 4.6 | [ |
2.6%PdMS | 苯酚 | 350/3 | 94.6 | 89.1 | [ |
1.9%Pd/SBA-15 | 苯酚 | 350/3 | 97.5 | 84.9 | [ |
1.0%Pd/PSSH/Al2O | 苯酚 | 200/4 | 91 | 46 | [ |
1.0%Pd/PSSH/TiO2 | 苯酚 | 200/4 | 98 | 78 | [ |
5.0%Pd/AC | 愈创木酚 | 330/3.4 | 100 | 90.4 | [ |
1.1%Pd/ZSM-5 | 苯酚 | 150/4 | >99.9 | 93.0 | [ |
ZSM-5@Pd/Al2O3(1∶1) | 苯酚 | 150/4 | >99.9 | 98.0 | [ |
3.3%Pd@MIL-101 | 苯甲醚 | 260/3 | 77.7 | 52.1 | [ |
2%Pd/Nb2O5 | 木质素 | 250/0.5 | 41.8 | 76.1 | [ |
Pd催化剂(质量分数) | 反应物 | 反应条件/(℃/MPa) | 转化率/% | 选择性(烃类)/% | 参考文献 |
---|---|---|---|---|---|
1.92%Pd/SiO2 | 苯酚 | 300/1 | 7.0 | 8.1 | [ |
2.28%Pd/Al2O3 | 苯酚 | 300/1 | 7.5 | 14.2 | [ |
1.83%Pd/TiO2 | 苯酚 | 300/1 | 7.0 | 66.8 | [ |
2.24%Pd/ZrO2 | 苯酚 | 300/1 | 12.6 | 29.9 | [ |
2.44%Pd/CeO2 | 苯酚 | 300/1 | 9.0 | 4.9 | [ |
2.46%Pd/CeZrO2 | 苯酚 | 300/1 | 12.4 | 4.6 | [ |
2.6%PdMS | 苯酚 | 350/3 | 94.6 | 89.1 | [ |
1.9%Pd/SBA-15 | 苯酚 | 350/3 | 97.5 | 84.9 | [ |
1.0%Pd/PSSH/Al2O | 苯酚 | 200/4 | 91 | 46 | [ |
1.0%Pd/PSSH/TiO2 | 苯酚 | 200/4 | 98 | 78 | [ |
5.0%Pd/AC | 愈创木酚 | 330/3.4 | 100 | 90.4 | [ |
1.1%Pd/ZSM-5 | 苯酚 | 150/4 | >99.9 | 93.0 | [ |
ZSM-5@Pd/Al2O3(1∶1) | 苯酚 | 150/4 | >99.9 | 98.0 | [ |
3.3%Pd@MIL-101 | 苯甲醚 | 260/3 | 77.7 | 52.1 | [ |
2%Pd/Nb2O5 | 木质素 | 250/0.5 | 41.8 | 76.1 | [ |
1 | International Energy Agency..World energy outlook 2018[R]. Paris: IEA, 2018. https://www.iea.org/weo2018/. |
2 | 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊, 2019, 34(4): 434-442. |
MA Longlong, TANG Zhihua, WANG Congwei, et al. Research status and future development strategy of biomass energy[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 434-442. | |
3 | 袁振宏, 罗文, 吕鹏梅, 等. 生物质能产业现状及发展前景[J]. 化工进展, 2009, 28(10): 1687-1692. |
YUAN Zhenhong, LUO Wen, Pengmei LYU, et al. Status and prospect of biomass energy industry[J]. Chemical Industry and Engineering Progress, 2009, 28(10): 1687-1692. | |
4 | International Energy Agency.Bioenergy task 42: biorefinery[R]. Paris: IEA, 2016. http://www.iea-biornergy.task42-biorefineries.com/. |
5 | UDDIN M, TECHATO K, TAWEEKUN J, et al. An overview of recent developments in biomass pyrolysis technologies[J]. Energies, 2018, 11(11): 1-24. |
6 | BISHESWAR K, GOPINATH H. Progress and future of biodiesel synthesis: advancements in oil extraction and conversion technologies[J]. Energy Conversion & Management, 2019, 182: 307-339. |
7 | VENDERBOSCH R H, ARDIYANTI A R, WILDSCHUT J, et al. Stabilization of biomass derived pyrolysis oils[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(5): 674–686 |
8 | CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy and Fuels, 2004, 18(2): 590-598. |
9 | DINESH M, CHARLES U, PITTMAN J R, et al. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy and Fuels, 2006, 20(3): 848-889. |
10 | WILLIAMS A. Combustion of liquid fuel sprays[M]. London: Butterworth Publishers, 1990: 58-111. |
11 | OASMAA A, PEACOCKE C, GUST S, et al. Norms and standards for pyrolysis liquids. End-user requirements and specifications[J]. Energy Fuels, 2005, 19(21): 55-63. |
12 | YANG Z, KUMAR A, HUHNKE R L. Review of recent developments to improve storage and transportation stability of bio-oil[J]. Renewable & Sustainable Energy Reviews,2015,50: 859-870. |
13 | MORTENSEN P M, GRUNWALDT J D, JENSEN P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
14 | WANG Huamin, MALE Jonathan, WANG Yong. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
15 | DEEPA A K, PARESH L D. Function of metals and supports on the hydrodeoxygenation of phenolic compounds[J]. ChemPlusChem, 2014, 79(11): 1573-1583. |
16 | ZHAN Si, ZHANG Xinghua, WANG Chenguang, et al. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds[J]. Catalysts, 2017, 7(6): 169. |
17 | CHEN Lu, XIN Jiayu, NI Lingli, et al. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems[J]. Green Chemistry, 2016, 18(8): 2341-2352. |
18 | LI Y Z, XU B L, FAN Y N, et al. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes[J]. Journal of Molecular Catalysis A: Chemical, 2004, 216(1): 107-114. |
19 | ZHANG J, ZHANG M, HAN Y, et al. Nucleation and growth of palladium clusters on anatase TiO2(101) surface: a first principle study[J]. The Journal of Physical Chemistry, 2008, 112(49): 19506-19515. |
20 | LI Y, FAN Y, YANG H, et al. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2[J]. Chemical Physics Letters, 2003, 372(1): 160-165. |
21 | PRISCILLA M D, RAIMUNDO C R, LUIZ E P, et al. Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catalysis, 2017, 7(3): 2058-2073. |
22 | PRISCILLA M D, RAIMUNDO C R, LUIZ E P, et al. Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports[J]. ACS Catalysis, 2015, 5(2): 1318-1329. |
23 | TELES C A, PRISCILLA M D, BRAGA A H, et al. The role of defect sites and oxophilicity of the support on the phenol hydrodeoxygenation reaction[J]. Applied Catalysis B: Environmental, 2019, 249: 292-305. |
24 | LU Mohong, DU Hu, WEI Bin, et al. Catalytic hydrodeoxygenation of guaiacol over palladium catalyst on different titania supports[J]. Energy & Fuels, 2017, 31(10): 10858-10865. |
25 | GAGE S H, ENGELHARDT J, MENART M J, et al. Palladium intercalated into the walls of mesoporous silica as robust and regenerable catalysts for hydrodeoxygenation of phenolic compounds[J]. ACS Omega,2018, 3(7): 7681-7691. |
26 | LU M H, LI M S, SHAN Y H, et al. TiO2-modified Pb/SiO2 for catalytic hydrodeoxygenation of guaiacol[J]. Energy & Fuels, 2016, 30(8): 6671-6676. |
27 | ISIMJAN T T, HE Q, LIU Y, et al. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: a model for tandem environmental catalysis[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(4): 381-388. |
28 | LIU S, WANG H, SMITH K J, et al. Hydrodeoxygenation of 2-methoxyphenol over Ru, Pd, and Mo2C catalysts supported on carbon[J]. Energy & Fuels, 2017, 31(6): 6378-6388. |
29 | XU S, DU J, LI H, et al. Zeolite@Pd/Al2O3 core-shell catalyst for efficient hydrodeoxygenation of phenolic biomolecules[J]. Industrial & Engineering Chemistry Research, 2018, 57(42):14088-14095. |
30 | REN H, LI C, YIN D, et al. Pd@MIL-101 as an efficient bifunctional catalyst for hydrodeoxygenation of anisole[J]. RSC Adv., 2016, 6(88): 85659-85665. |
31 | DONG L, SHAO Y, HAN X, et al. Comparison of two multifunctional catalysts [M/Nb2O5 (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin[J]. Catalysis Science & Technology, 2018, 8(23): 6129-6136. |
32 | WANG Cong, MIRONENKO A V, RAIZADA A, et al. Mechanistic study of the direct hydrodeoxygenation of m-cresol over WOx-decorated Pt/C catalysts[J]. ACS Catalysis, 2018, 8(9): 7749-7759. |
33 | ZANUTTINI M S, LAGO C D, GROSS M S, et al. Hydrodeoxygenation of anisole with Pt catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6419-6431. |
34 | NIU Xiaopo, FENG Fuxiang, YUAN Gang, et al. Hollow MFI zeolite supported Pt catalysts for highly selective and stable hydrodeoxygenation of guaiacol to cycloalkanes[J]. Nanomaterials, 2019, 9(3): 362. |
35 | GUAN Weixiang, CHEN Xiao, LI Chuang, et al. Nb(Ta)-based solid acid modified Pt/CNTs catalysts for hydrodeoxygenation of lignin-derived compounds[J]. Molecular Catalysis, 2019(467): 61-69. |
36 | RUBES M, HE J J, NACHTIGALL P, et al. Direct hydrodeoxygenation of phenol over carbon-supported Ru catalysts: a computational study[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 300-307. |
37 | YAO Gang, WU Guangjun, DAI Weili, et al. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions[J]. Fuel, 2015, 150: 175-183. |
38 | CHIU C, GENEST A, BORGNA A, et al. Hydrodeoxygenation of guaiacol over Ru(0001): a DFT study[J]. ACS Catalysis, 2014, 4(11): 4178-4188. |
39 | RYAN C N, BAEK B, RUIZ P, et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2[J]. ACS Catalysis, 2015, 5(11): 6509-6523. |
40 | KORDOULI E, KORDULIS C, LYCOURGHIOTIS A, et al. HDO activity of carbon-supported Rh, Ni and Mo-Ni catalysts[J]. Molecular Catalysis, 2017, 441: 209-220. |
41 | DELFINA G P, VOSS J, JENSEN A D, et al. Hydrodeoxygenation of phenol to benzene and cyclohexane on Rh(111) and Rh(211) surfaces: insights from density functional theory[J]. The Journal of Physical Chemistry C, 2016, 120(33): 18529-18537. |
42 | YOON J S, LEE T, CHOI J W, et al. Layered MWW zeolite-supported Rh catalysts for the hydrodeoxygenation of lignin model compounds[J]. Catalysis Today, 2017, 293/294: 142-150. |
43 | GRANADOS-FOCIL A A, GRANADOS-FOCIL S, CONDE-SOTELO V M, et al. Development of bifunctional hydrodeoxygenation catalyst Rh-HY for the generation of biomass-derived high- energy-density fuels[J]. Energy Technology, 2019, 7: 1-16. |
44 | AUERSVALD M, SHUMEIKO B, STAS M, et al. Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (7): 7080-7093. |
45 | WANG W, WU K, TAN S, et al. Hydrothermal synthesis of carbon-coated CoS2-MoS2 catalysts with enhanced hydrophobicity and hydrodeoxygenation activity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8602-8609. |
46 | TEMPLIS C C, CREVELAS C J, PAPASTYLIANOU A A, et al. Phenol hydrodeoxygenation over a reduced and sulfided NiMo/γ-Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6278-6287. |
47 | SONG W, ZHOU S, HU S, et al. Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes[J]. ACS Catalysis, 2018, 9(1): 259-268. |
48 | TRAN C, HAN Y, GARCIA PEREZ M, et al. Synergistic effect of Mo-W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons[J]. Catalysis Science & Technology, 2019, 9(6): 1387-1397. |
49 | IIDA T, SHETTY M, MURUGAPPAN K, et al. Encapsulation of molybdenum carbide nanoclusters inside zeolite micropores enables synergistic bifunctional catalysis for anisole hydrodeoxygenation[J]. ACS Catalysis, 2017, 7(12): 8147-8151. |
50 | LU Q, CHEN C, LUC W, et al. Ordered mesoporous metal carbides with enhanced anisole hydrodeoxygenation selectivity[J]. ACS Catalysis, 2016, 6(6): 3506-3514. |
51 | ZHANG T, GUO X, ZHAO Z. Glucose-assisted preparation of a nickel-molybdenum carbide bimetallic catalyst for chemoselective hydrogenation of nitroaromatics and hydrodeoxygenation of m-cresol[J]. ACS Applied Nano Materials, 2018, 1(7): 3579-3589. |
52 | LIU X, XU L, XU G, et al. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions[J]. ACS Catalysis, 2016, 6(11): 7611-7620. |
53 | WYVRATT B M, GAUDET J R, PARDUE D B, et al. Reactivity of hydrogen on and in nanostructured molybdenum nitride: crotonaldehyde hydrogenation[J]. ACS Catalysis, 2016, 6(9): 5797-5806. |
54 | CHENG X, WANG D, LIU J, et al. Ultra-small Mo2N on SBA-15 as a highly efficient promoter of low-loading Pd for catalytic hydrogenation[J]. Nanoscale, 2018, 10(47): 22348-22356. |
55 | YANG H, NIE R, XIA W, et al. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chemistry, 2017, 19(23): 5714-5722. |
56 | 田新龙. 基于过渡金属氮化物氧还原催化剂的制备及其氧还原性能研究[D]. 广州: 华南理工大学, 2016. |
TIAN Xinlong. Preparation of transition metal nitride based catalysts and their catalytic performance towards oxygen reduction reaction[D]. Guangzhou: South China University of Technology, 2016. | |
57 | 朱对虎, 李平. 过渡金属磷化物催化剂综述[J]. 工业催化, 2019, 27(7): 7-10. |
ZHU Duihu, LI Ping. Preparation of transition metal nitride based catalysts and their catalytic performance towards oxygen reduction reaction[J]. Industrial Catalysis, 2019, 27(7): 7-10. | |
58 | SHIT S C, JOSEPH B, MARINI C, et al. Porous organic polymer-driven evolution of high-performance cobalt phosphide hybrid nanosheets as vanillin hydrodeoxygenation catalyst[J]. ACS Applied Materials & Interfaces,2019, 11(27): 24140-24153. |
59 | ZHAO H Y, LI D, BUI P, et al. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Applied Catalysis A: General, 2011, 391(1/2): 305-310. |
60 | BONITA Y, HICKS J C. Periodic trends from metal substitution in bimetallic Mo-based phosphides for hydrodeoxygenation and hydrogenation reactions[J]. The Journal of Physical Chemistry C, 2017, 122(25): 13322-13332. |
61 | JAIN V, BONITA Y, BROWN A, et al. Mechanistic insights into hydrodeoxygenation of phenol on bimetallic phosphide catalysts[J]. Catalysis Science & Technology, 2018, 8(16): 4083-4096. |
62 | PETER M M, JAN-DIERK G, PETER A, et al. Screening of catalysts for hydrodeoxygenation of phenolas a model compound for bio-oil[J]. ACS Catalysis, 2013, 3(8): 1774-1785. |
63 | DONGIL A B, GHAMPSON I T, GARCIA R, et al. Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: effect of the support and Ni loading[J]. RSC Advances, 2016, 6(4): 2611-2623. |
64 | HENSLEY A J R, WANG Y, MEI D, et al. Mechanistic effects of water on the Fe-catalyzed hydrodeoxygenation of phenol[J]. The Role of Brønsted Acid Sites, ACS Catalysis, 2018, 8(3): 2200-2208. |
65 | ANSALONI S, RUSSO N, PIRONE R. Hydrodeoxygenation of guaiacol over molybdenum‐based catalysts: the effect of support and the nature of the active site[J]. The Canadian Journal of Chemical Engineering, 2017, 95(9): 1730-1744. |
66 | LINDFORS C, MAKI-ARVELA P, PATURI P, et al. Hydrodeoxygenation of isoeugenol over Ni- and Co-supported catalysts[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 14545-14560. |
67 | ELKASABI Y, LIU Q, CHOI Y S, et al. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption[J]. Fuel, 2017, 207: 510-521. |
68 | ZHOU J, AN W, WANG Z, et al. Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: mechanism, kinetics and descriptor[J]. Catalysis Science & Technology, 2019, 9(16): 4314-4326. |
69 | PAN Liuyi, HE Yulong, NIU Menglong, et al. Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni-M/SiO2 (M=Ce, Co, Sn, Fe) bimetallic catalysts[J]. RSC Adv., 2019, 9(37): 21175-21185. |
70 | RESENDE K A, TELES C A, JACOBS G, et al. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance[J]. Applied Catalysis B: Environmental, 2018, 232: 213-231. |
71 | HONG Yongchun, ZHANG He, SUN Junming, et al. Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol[J]. ACS Catalysis, 2014, 4(10): 3335-3345. |
72 | DUAN H, DONG J, GU X, et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nature Communications, 2017,8(591):1-10. |
73 | AFREEN G, PATRA T, UPADHYAYULA S. Thermodynamic insights into valorization of biomass-derived oxygenates and reconciliation with experimental study[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 2197-2210. |
74 | SHETTY M, MURUGAPPAN K, PRASOMSRI T, et al. Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol[J]. Journal of Catalysis, 2015, 331: 86-97. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |