Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 295-304.DOI: 10.16085/j.issn.1000-6613.2024-0937
• Industrial catalysis • Previous Articles Next Articles
XIONG Lei1,2(), DING Feiyan2, LI Cong2, WANG Qunle3, LYU Qi3, ZHAI Xiaona1, LIU Feng1()
Received:
2024-06-01
Revised:
2024-07-25
Online:
2024-12-06
Published:
2024-11-20
Contact:
LIU Feng
熊磊1,2(), 丁飞燕2, 李聪2, 王群乐3, 吕起3, 翟晓娜1, 刘峰1()
通讯作者:
刘峰
作者简介:
熊磊(1985—),男,博士研究生,副教授,研究方向为工业催化及高分子材料。E-mail:xionglei@ncmc.edu.cn。
基金资助:
CLC Number:
XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304.
熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0937
催化剂 | Pt负载量(质量分数)/% | T50%①/℃ | T90%②/℃ |
---|---|---|---|
Pt/NaZSM-5 | 1 | 122 | 128 |
Pt/Al2O3 | 5 | 210 | 255 |
Pt/Al-PILC | 2 | 310 | 325 |
催化剂 | Pt负载量(质量分数)/% | T50%①/℃ | T90%②/℃ |
---|---|---|---|
Pt/NaZSM-5 | 1 | 122 | 128 |
Pt/Al2O3 | 5 | 210 | 255 |
Pt/Al-PILC | 2 | 310 | 325 |
催化剂类型 | 应用领域 | 特点 |
---|---|---|
MCH脱氢 | ||
甲醇氧化 | PANI中的N易与Pt配位,有效阻止Pt聚集,提高了催化剂的稳定性[ | |
Pt/LaNiO3/SiO2 | CO氧化 | LaNi1–x Pt x O3/SiO2为前体,Pt分散性高,且分布均匀、抗烧结[ |
炔烃半氢化 | ZIF-8薄膜增加了Pt的电子密度,提高了炔烃半氢化的选择性[ | |
Pt/CS/SiO2 | 烯烃硅氢化 |
催化剂类型 | 应用领域 | 特点 |
---|---|---|
MCH脱氢 | ||
甲醇氧化 | PANI中的N易与Pt配位,有效阻止Pt聚集,提高了催化剂的稳定性[ | |
Pt/LaNiO3/SiO2 | CO氧化 | LaNi1–x Pt x O3/SiO2为前体,Pt分散性高,且分布均匀、抗烧结[ |
炔烃半氢化 | ZIF-8薄膜增加了Pt的电子密度,提高了炔烃半氢化的选择性[ | |
Pt/CS/SiO2 | 烯烃硅氢化 |
催化剂类型 | 应用领域 | 特点 |
---|---|---|
Pt/Al2O3 | 废水脱氟处理 | 与传统氧化脱氟工艺相比,无有毒副产物产生[ |
Pt/CePr/Al2O3 | CH4/CO2重整 | Ce、Pr的引入提高了催化剂的抗烧结性,延长了催化剂的使用寿命[ |
Pt/CZA-T | 汽车尾气污染物处理 | 表面高密度缺陷促进了Pt的分散,形成了较强的Pt-O-Ce相互作用,使Pt/CZA-T具有较高的氧化活性[ |
催化剂类型 | 应用领域 | 特点 |
---|---|---|
Pt/Al2O3 | 废水脱氟处理 | 与传统氧化脱氟工艺相比,无有毒副产物产生[ |
Pt/CePr/Al2O3 | CH4/CO2重整 | Ce、Pr的引入提高了催化剂的抗烧结性,延长了催化剂的使用寿命[ |
Pt/CZA-T | 汽车尾气污染物处理 | 表面高密度缺陷促进了Pt的分散,形成了较强的Pt-O-Ce相互作用,使Pt/CZA-T具有较高的氧化活性[ |
硝基芳香烃 | 产物 | 反应时间 /min | 产率/% | 选择性 /% |
---|---|---|---|---|
对硝基苯乙酮 | 对氨基苯乙酮 | 120 | 96.2 | >99 |
对硝基苯甲酸乙酯 | 对氨基苯甲酸乙酯 | 70 | 99.9 | >99 |
邻氯硝基苯 | 邻氯苯氨 | 180 | 95.3 | 96.8 |
邻硝基苯甲醛 | 邻氨基苯甲醛 | 130 | 96.2 | >99 |
间硝基苯乙酮 | 间氨基苯乙酮 | 220 | 98.5 | >99 |
硝基芳香烃 | 产物 | 反应时间 /min | 产率/% | 选择性 /% |
---|---|---|---|---|
对硝基苯乙酮 | 对氨基苯乙酮 | 120 | 96.2 | >99 |
对硝基苯甲酸乙酯 | 对氨基苯甲酸乙酯 | 70 | 99.9 | >99 |
邻氯硝基苯 | 邻氯苯氨 | 180 | 95.3 | 96.8 |
邻硝基苯甲醛 | 邻氨基苯甲醛 | 130 | 96.2 | >99 |
间硝基苯乙酮 | 间氨基苯乙酮 | 220 | 98.5 | >99 |
催化剂 | 酸位点数量/mmol·g-1 | 比表面积/m2·g-1 | N2选择性/% | Pt负载量/% | T50%①/℃ |
---|---|---|---|---|---|
Nb2O5 | 0.33 | 210 | — | — | — |
Nb2O5-NaOH | 0.14 | 207 | — | — | — |
Pt/Nb2O5 | 0.33 | 209 | 98 | 0.90 | 188 |
Pt/Nb2O5-NaOH | 0.16 | 205 | 74 | 0.86 | 213 |
催化剂 | 酸位点数量/mmol·g-1 | 比表面积/m2·g-1 | N2选择性/% | Pt负载量/% | T50%①/℃ |
---|---|---|---|---|---|
Nb2O5 | 0.33 | 210 | — | — | — |
Nb2O5-NaOH | 0.14 | 207 | — | — | — |
Pt/Nb2O5 | 0.33 | 209 | 98 | 0.90 | 188 |
Pt/Nb2O5-NaOH | 0.16 | 205 | 74 | 0.86 | 213 |
改性电极 | 甲酸浓度 /mol·L-1 | 电化学质量活性 /A·g-1 | 电化学活性 表面积/m2·g-1 |
---|---|---|---|
Pt-Pd/PFCA/GC | 0.5 | 1225 | 53.3 |
PtPd/HPC500 | 0.5 | 126 | 49.6 |
Pt/C | 0.5 | 8.3 | 2.4 |
Pt/Pd/PDAN/GC | 0.5 | 1825 | 90.43 |
改性电极 | 甲酸浓度 /mol·L-1 | 电化学质量活性 /A·g-1 | 电化学活性 表面积/m2·g-1 |
---|---|---|---|
Pt-Pd/PFCA/GC | 0.5 | 1225 | 53.3 |
PtPd/HPC500 | 0.5 | 126 | 49.6 |
Pt/C | 0.5 | 8.3 | 2.4 |
Pt/Pd/PDAN/GC | 0.5 | 1825 | 90.43 |
电极 | CO氧化的 库仑电荷/mC | 电化学活性 表面积/m2·g-1 | 正向峰值 电流密度/A·g-1 |
---|---|---|---|
Pt/GC | 0.323 | 27.2 | 160.9 |
Pt/PAIn/GC | 0.291 | 24.5 | 56.9 |
Pt/PAIn/GE/GC | 0.481 | 40.6 | 329.3 |
电极 | CO氧化的 库仑电荷/mC | 电化学活性 表面积/m2·g-1 | 正向峰值 电流密度/A·g-1 |
---|---|---|---|
Pt/GC | 0.323 | 27.2 | 160.9 |
Pt/PAIn/GC | 0.291 | 24.5 | 56.9 |
Pt/PAIn/GE/GC | 0.481 | 40.6 | 329.3 |
1 | LEE Sol A, LEE Mi Gyoung, JANG Ho Won. Catalysts for electrochemical ammonia oxidation: Trend, challenge, and promise[J]. Science China Materials, 2022, 65(12): 3334-3352. |
2 | YANG Zhirong, SHI Yao, LIN Yan, et al. Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming[J]. Chemical Engineering Science, 2022, 252: 117286. |
3 | Iyad S ALI, CHEN Linxiao, REZVANI Fereshteh, et al. Tuning coordinated supported catalysts: Carboxylic acid-based ligands to improve ceria-supported Pt catalysts for hydrosilylation[J]. Applied Catalysis A: General, 2022, 639: 118634. |
4 | WANG Haifeng, LIN Mingyue, MURAYAMA Toru, et al. Selective catalytic oxidation of ammonia to nitrogen over zeolite-supported Pt-Au catalysts: Effects of alloy formation and acid sites[J]. Journal of Catalysis, 2021, 402: 101-113. |
5 | WANG Rong, LIANG Shuhuai, ZHU Jinhua, et al. Hydrosilylation of alkenes with tertiary silanes under mild conditions by Pt(Ⅱ)-vinyl complex supported on modified rice straw biochar[J]. Molecular Catalysis, 2023, 542: 113141. |
6 | SPEIER John L, WEBSTER James A, BARNES Garrett H. The addition of silicon hydrides to olefinic double bonds. part Ⅱ. the use of group Ⅷ metal catalysts[J]. Journal of the American Chemical Society, 1957, 79(4): 974-979. |
7 | KARSTEDT B. Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes: US3775452DA[P]. 1973-11-27. |
8 | CHEN Haohua, LI Yuanyuan, LIU Song, et al. On the mechanism of homogeneous Pt-catalysis: A theoretical view[J]. Coordination Chemistry Reviews, 2021, 437: 213863. |
9 | ROCHA Willian R. Hydrogen activation and aldehyde elimination promoted by homogeneous Pt-Sn catalyst: A theoretical study[J]. Journal of Molecular Structure: THEOCHEM, 2004, 677(1/2/3): 133-143. |
10 | DIOUMAEV Vladimir K, Morris BULLOCK R. A recyclable catalyst that precipitates at the end of the reaction[J]. Nature, 2003, 424(6948): 530-532. |
11 | WAGNER George H. Reaction of silanes with aliphatic unsaturated compounds: US2637738[P]. 1953-05-05. |
12 | SU Zerui, ZHANG Jian, LU Shiyao, et al. Pt nanoparticles supported on Nb-modified TiO2 as an efficient heterogeneous catalyst for the conversion of cellulose to light bioalcohols[J]. Chemical Communications, 2022, 58(88): 12349-12352. |
13 | YAO Jihui, XU Zhikang, CHENG Shuo, et al. Pt/Al2O3 as efficient catalyst for the dehydrogenation of Dodecahydro-N-ethylcarbazole[J]. Chemical Engineering Journal, 2024, 491: 152100. |
14 | KIM Yongseon, Dong Gun OH, CHO Sung June, et al. Catalytic behavior of Pt single-atoms supported on CeO2 [J]. Catalysis Today, 2024, 425: 114298. |
15 | ADAM Mohamed Shaker S, KHALIL Ahmed, TAHA Amel, et al. Facile synthetic route of TiO2-ZnO heteronanostructure coated by oxovanadium (Ⅳ) bis-Schiff base complex as a potential effective homogeneous/heterogeneous catalysts for alcohols redox systems[J]. Surfaces and Interfaces, 2023, 39: 102914. |
16 | BARTECZKO Natalia, GRYMEL Mirosława, CHROBOK Anna. Heterogeneous catalysts for olefin metathesis[J]. Catalysis Communications, 2023, 177: 106662. |
17 | CAI Xin, LIU Xin, HAO Zhixian, et al. Improved Pt dispersion and catalytic performance by modified carbon support with low surface oxygen content and more mesopores[J]. Journal of Power Sources, 2024, 604: 234478. |
18 | WANG Jingyi, HE Guangzhi, WANG Chunying, et al. HCHO oxidation on Pt-Na/SiO2 catalyst with ultralow Pt loading: New insight into the effect of Si support and Na promoter[J]. Applied Catalysis B: Environment and Energy, 2024, 347: 123787. |
19 | NA RUNGSI Artita, LUENGNARUEMITCHAI Apanee, CHOLLACOOP Nuwong, et al. Performance and sulfur poisoning of SiO2, γ-Al2O3, and SiO2-Al2O3-supported bimetallic Pd-Pt catalysts in selective hydrogenation of soybean oil-derived fatty acid methyl esters[J]. Fuel, 2023, 331: 125919. |
20 | WANG Zhendong, LIU Guozhu, ZHANG Xiangwen. Efficient and stable Pt/CaO-TiO2-Al2O3 for the catalytic dehydrogenation of cycloalkanes as an endothermic hydrocarbon fuel[J]. Fuel, 2023, 331: 125732. |
21 | SHI Yijun, WAN Jie, KONG Fanzhe, et al. Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129932. |
22 | LI Shuangju, LIN Yin, WANG Da, et al. Polyhedral cobalt oxide supported Pt nanoparticles with enhanced performance for toluene catalytic oxidation[J]. Chemosphere, 2021, 263: 127870. |
23 | FOTIE Jean, ENECHOJO AGBO Mercy, QU Fengrui, et al. Dichloro(ethylenediamine)platinum(Ⅱ), a water-soluble analog of the antitumor cisplatin, as a heterogeneous catalyst for a stereoselective hydrosilylation of alkynes under neat conditions[J]. Tetrahedron Letters, 2020, 61(36): 152300. |
24 | WANG Wei, HE Lei, LUO Qunxing, et al. Synthesis and application of core-shell, hollow, yolk-shell multifunctional structure zeolites[J]. Microporous and Mesoporous Materials, 2023, 362: 112766. |
25 | DAI Xiaojun, CHENG Yan, LIU Tingting, et al. Tailored synthesis of plate-like SAPO-11 molecular sieve and its application in non-noble metal-supported catalyst for efficient hydroisomerization of long-chain n-alkanes[J]. Chemical Engineering Journal, 2024, 480: 148358. |
26 | María PÉREZ-PAGE, YU Erick, LI Jun, et al. Template-based syntheses for shape controlled nanostructures[J]. Advances in Colloid and Interface Science, 2016, 234: 51-79. |
27 | JIANG Yiwen, ZHANG Ling, XIE Yiquan, et al. Enhanced catalytic activity in propene oxidation over NaZSM-5 zeolite-supported Pt nanoparticles by increasing the zeolite Si/Al ratio[J]. Catalysis Today, 2020, 355: 476-481. |
28 | WANG Yu, CHEN Yi, ZHANG Long, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2020, 308: 110538. |
29 | KHAWAJA Rebecca EL, SONAR Shilpa, BARAKAT Tarek, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles[J]. Catalysis Today, 2022, 405: 212-220. |
30 | PARK Hongjun, PARK Hanyoung, KIM Jeong-Chul, et al. Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane dehydrogenation[J]. Journal of Catalysis, 2021, 404: 760-770. |
31 | LIU Da, CHANG Qinghuan, GAO Yan, et al. High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode[J]. Electrochimica Acta, 2020, 330: 135243. |
32 | XU Yihu, ZHU Kaili, YANG Xiao, et al. Efficient application of new porous carbon nanoparticle composite polyaniline material in microbial fuel cells[J]. Industrial Crops and Products, 2023, 192: 116130. |
33 | XU Pan, ZHANG Jing, JIANG Gaopeng, et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction[J]. Nano Energy, 2018, 51: 745-753. |
34 | GHAREHDAGHI Zahra, RAHIMI Rahmatollah, NAGHIB Seyed Morteza, et al. Cu(Ⅱ)-porphyrin metal-organic framework/graphene oxide: Synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment[J]. JBIC Journal of Biological Inorganic Chemistry, 2021, 26(6): 689-704. |
35 | SAQUIC Boanerges Elias Bamaca, IRMAK Sibel, WILKINS Mark. Enhancement of catalytic performance of graphene supported Pt catalysts by Ni and W for hydrogen gas production by hydrothermal gasification of biomass-derived compounds[J]. Fuel, 2022, 308: 122079. |
36 | GUO Yaodong, DI Zhaoying, GUO Xiaonan, et al. N/Ce doped graphene supported Pt nanoparticles for the catalytic oxidation of formaldehyde at room temperature[J]. Journal of Environmental Sciences, 2023, 125: 135-147. |
37 | LI Minghui, SUN Yuhan, TANG Yuqiong, et al. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube[J]. Journal of Hazardous Materials, 2020, 388: 121745. |
38 | JANG Munjeong, CHOI Subin, KIM Yoondo, et al. Effect of CeO2 redox properties on the catalytic activity of Pt-CeO x over irreducible SiO2 support for methylcyclohexane (MCH) dehydrogenation[J]. Applied Surface Science, 2023, 627: 157134. |
39 | LASHKENARI Mohammad Soleimani, GHORBANI Mohsen, SILAKHORI Nadia, et al. Enhanced electrochemical performance and stability of Pt/Ni electrocatalyst supported on SiO2-PANI nanocomposite: A combined experimental and theoretical study[J]. Materials Chemistry and Physics, 2021, 262: 124290. |
40 | ZHANG Siran, AN Kang, FANG Chunyu, et al. SiO2 supported highly dispersed Pt atoms on LaNiO3 by reducing a perovskite-type oxide as the precursor and used for CO oxidation[J]. Catalysis Today, 2020, 355: 222-230. |
41 | LUO Gen, ZHANG Bin, YANG Xinchun, et al. Synthesis of ZIF-8-coated Pt/SiO2 by vapor deposition for alkyne semi-hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1316-1325. |
42 | XIE Huilin, YUE Hangbo, ZHANG Weixin, et al. A chitosan modified Pt/SiO2 catalyst for the synthesis of 3-poly(ethylene glycol) propyl ether-heptamethyltrisiloxane applied as agricultural synergistic agent[J]. Catalysis Communications, 2018, 104: 118-122. |
43 | ANIL S, INDRAJA S, SINGH R, et al. A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8177-8213. |
44 | PARK Jaehyeong, AN Seonyoung, Eun Hea JHO, et al. Exploring reductive degradation of fluorinated pharmaceuticals using Al2O3-supported Pt-group metallic catalysts: Catalytic reactivity, reaction pathways, and toxicity assessment[J]. Water Research, 2020, 185: 116242. |
45 | FONSECA R O DA, RABELO-NETO R C, SIMÕES R C C, et al. Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(8): 5182-5191. |
46 | TAN Wei, XIE Shaohua, WANG Xin, et al. Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust[J]. Chemical Engineering Journal, 2021, 426: 131855. |
47 | Wojciech GAC, ZAWADZKI Witold, Marcin KUŚMIERZ, et al. Neodymium promoted ceria and alumina supported nickel catalysts for CO2 methanation reaction[J]. Applied Surface Science, 2023, 631: 157542. |
48 | SONG Wenjia, DENG Yanbo, LV Zhiwen, et al. Effect of cobalt on CeO2 nanorod supported Pt catalyst: Structure, performance, kinetics and reaction mechanism in CO oxidation[J]. Chemical Engineering Science, 2024, 296: 120212. |
49 | LEI Lijun, FAN Wei, HOU Fengxiao, et al. Ti doped CeO2 nanosheets supported Pd catalyst for alcohol oxidation: Catalysis of interfacial sites[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1007-1017. |
50 | WEN Meng, DONG Fang, YAO Jianfei, et al. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs[J]. Journal of Catalysis, 2022, 412: 42-58. |
51 | TANG Mingyu, LIU Suting, FU Wanlin, et al. Surface oxygen vacancies promoted Pt nanoparticles on celery-like CeO2 nanofibers for enhanced sintering resistance and catalytic performance[J]. Materials Today Nano, 2022, 20: 100249. |
52 | LIU Yufeng, ZHOU Ying, KE Quanli, et al. Enhanced catalytic oxidation of diluted ethylene oxide on Pt/CeO2 catalyst under low temperature[J]. Applied Catalysis A: General, 2022, 639: 118642. |
53 | QI Fuyuan, YANG Weiping, YU Haochen, et al. Manipulating interfacial atomic structure of Pt/Ce1- x YxO2- δ to improve charge transfer capacity and catalytic activity in aerobic oxidation of HMF[J]. Applied Surface Science, 2022, 598: 153769. |
54 | MENG Hao, YANG Yusen, SHEN Tianyao, et al. A strong bimetal-support interaction in ethanol steam reforming[J]. Nature Communications, 2023, 14(1): 3189. |
55 | FU Jile, ZHANG Xiang, LI Huan, et al. Enhancing electronic metal support interaction (EMSI) over Pt/TiO2 for efficient catalytic wet air oxidation of phenol in wastewater[J]. Journal of Hazardous Materials, 2022, 426: 128088. |
56 | ALONSO Francisco, BUITRAGO Robison, MOGLIE Yanina, et al. Hydrosilylation of alkynes catalysed by platinum on titania[J]. Journal of Organometallic Chemistry, 2011, 696(1): 368-372. |
57 | LAN Lan, DALY Helen, JIAO Yilai, et al. Comparative study of the effect of TiO2 support composition and Pt loading on the performance of Pt/TiO2 photocatalysts for catalytic photoreforming of cellulose[J]. International Journal of Hydrogen Energy, 2021, 46(60): 31054-31066. |
58 | YAN Zhaoxiong, XU Zhihua, YANG Zhihua, et al. Graphene oxide/Fe2O3 nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde[J]. Applied Surface Science, 2019, 467: 277-285. |
59 | JING Pei, GAN Tao, QI Hui, et al. Synergism of Pt nanoparticles and iron oxide support for chemoselective hydrogenation of nitroarenes under mild conditions[J]. Chinese Journal of Catalysis, 2019, 40(2): 214-222. |
60 | LI Laiming, LI Youxin, YAN Jincong, et al. A magnetically recyclable superparamagnetic silica supported Pt nanocatalyst through a multi-carboxyl linker: Synthesis, characterization, and applications in alkene hydrosilylation[J]. RSC Advances, 2019, 9(22): 12696-12709. |
61 | HUO Yingpeng, HU Jiwen, TU Yuanyuan, et al. Efficient magnetically separable heterogeneous platinum catalyst bearing imidazolyl schiff base ligands for hydrosilylation[J]. Journal of Organometallic Chemistry, 2021, 936: 121714. |
62 | ZHOU Chunmei, SHI Wenrui, WAN Xiaoyue, et al. Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst[J]. Catalysis Today, 2019, 330: 92-100. |
63 | SHEN Fei, SUN Zhongti, HE Qinggang, et al. Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage[J]. Materials Horizons, 2021, 8(4): 1130-1152. |
64 | LIN Mingyue, AN Baoxiang, TAKEI Takashi, et al. Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity[J]. Journal of Catalysis, 2020, 389: 366-374. |
65 | TRAN Si Bui Trung, CHOI Hanseul, Sunyoung OH, et al. Defective Nb2O5-supported Pt catalysts for CO oxidation: Promoting catalytic activity via oxygen vacancy engineering[J]. Journal of Catalysis, 2019, 375: 124-134. |
66 | Jin-Woo JUN, Young-Woong SUH, Dong Jin SUH, et al. Strong metal-support interaction effect of Pt/Nb2O5 catalysts on aqueous phase hydrodeoxygenation of 1, 6-hexanediol[J]. Catalysis Today, 2018, 302: 108-114. |
67 | SU Kaiyi, WANG Yehong, ZHANG Chaofeng, et al. Tuning the Pt species on Nb2O5 by support-induced modification in the photocatalytic transfer hydrogenation of phenylacetylene[J]. Applied Catalysis B: Environmental, 2021, 298: 120554. |
68 | SAHOO Rupam, AHMED Raka, MANNA Arun K, et al. Natural product synthesis by a nanoporous In-MOF Catalyst: Crystallographic insight by incorporating substrate inside its nanopores[J]. Journal of Catalysis, 2024, 437: 115641. |
69 | WALCZAK Marcin, STEFANOWSKA Kinga, FRANCZYK Adrian, et al. Hydrosilylation of alkenes and alkynes with silsesquioxane (HSiMe2O)(i-Bu)7Si8O12 catalyzed by Pt supported on a styrene-divinylbenzene copolymer[J]. Journal of Catalysis, 2018, 367: 1-6. |
70 | SHATLA A S, HASSAN K M, ABD-EL-LATIF A A, et al. Poly 1,5 diaminonaphthalene supported Pt, Pd, Pt/Pd and Pd/Pt nanoparticles for direct formic acid oxidation[J]. Journal of Electroanalytical Chemistry, 2019, 833: 231-241. |
71 | YUE Ruirui, ZHANG Qiang, WANG Caiqin, et al. Graphene-poly(5-aminoindole) composite film as Pt catalyst support for methanol electrooxidation in alkaline medium[J]. Electrochimica Acta, 2013, 107: 292-300. |
72 | KHALIFEH-SOLTANI Maryam Sadat, SHAMS Esmaeil, SHARIFI Ensiyeh. Pt-Ru nanoparticles anchored on poly(brilliant cresyl blue) as a new polymeric support: Application as an efficient electrocatalyst in methanol oxidation reaction[J]. International Journal of Hydrogen Energy, 2020, 45(1): 849-860. |
[1] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[2] | ZOU Pengxiang, ZHANG Mingyang, ZHU Wenjie, GUO Yaojun, CHENG Jie, ZHAO Yanshu, YUAN Yingchun. Optimization of inlet structure of liquid-liquid impinging stream cyclone reactor for epoxidation of fatty acid methyl ester based on CFD [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 166-173. |
[3] | WANG Bo, WANG Bin, GONG Xiang, YANG Fusheng, FANG Tao. Enhancing dehydrogenation performance of liquid organic hydrogen carriers based on reactor design: Research progress [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 189-208. |
[4] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[5] | SONG Caicheng, CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of carbon-based carrier supported hydrodesulfurization catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 305-314. |
[6] | HU Xing, LIU Yi, DU Zexue. Research progress of catalyst for direct synthesis of epichlorohydrin from 3-chloropropylene [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 325-334. |
[7] | ZHANG Ridong, LYU Jianhua, LIU Jidong, GUO Bao, LI Wensong. Ru-K-NaY catalyzed decarbonylation of dimethyl oxalate to dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 382-390. |
[8] | GAO Congzhi, ZHANG Yaxuan, LIN Lu, DENG Xiaoting, YIN Xia, DING Yigang, XIAO Yanhua, DU Zhiping. Synthesis process of neopentyl glycol [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 469-478. |
[9] | ZHU Hao, LIU Hanfei, GAO Yuan, HUANG Yiping, FEI Xiaocheng, HAN Weiqing. Effect of salt on electrocatalytic performance and mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 571-580. |
[10] | LI Lin, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Chunxia, WANG Junlian, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Recovery and regeneration preparation of aluminum-based spent catalyst support [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 640-649. |
[11] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[12] | XIU Haoran, WANG Yungang, BAI Yanyuan, LIU Tao, ZHANG Xingbang, ZHANG Yijia. Pilot test of H2O2 low temperature catalytic oxidation for desulfurization and denitrification [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4941-4950. |
[13] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[14] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[15] | ZHANG Xi, LI Haoxin, ZHANG Tianyang, LI Zifu, SUN Wenjun, AO Xiuwei. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4587-4600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |