Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 209-224.DOI: 10.16085/j.issn.1000-6613.2024-0510
• Energy processes and technology • Previous Articles Next Articles
LIN Meijie1(), MI Shuodong1, BAO Cheng1,2(
)
Received:
2024-03-28
Revised:
2024-06-08
Online:
2024-12-06
Published:
2024-11-20
Contact:
BAO Cheng
通讯作者:
包成
作者简介:
林梅洁(1998—),女,硕士研究生,研究方向为Ni-GDC阳极电催化机理。E-mail:m202120230@xs.ustb.edu.cn。
基金资助:
CLC Number:
LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224.
林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224.
双羟基路径(DH)[ | 均相解离路径[ | 非均相路径 (在PDC、NDC、SDC和GDC上掺杂金属参与的过程)[ | 非均相路径 (在含有氧空位的GDC上,O空位参与的过程)[ |
---|---|---|---|
双羟基路径(DH)[ | 均相解离路径[ | 非均相路径 (在PDC、NDC、SDC和GDC上掺杂金属参与的过程)[ | 非均相路径 (在含有氧空位的GDC上,O空位参与的过程)[ |
---|---|---|---|
LH反应机理 | MvK反应机理 | Au-CeO2界面作为反应分子的结合位点 |
---|---|---|
LH反应机理 | MvK反应机理 | Au-CeO2界面作为反应分子的结合位点 |
---|---|---|
Ni/SDC体系CO2电化学还原反应机理[ | 对应电荷转移步骤的电化学表达式 | 推测CO电化学氧化反应机理 |
---|---|---|
步骤1: | ||
步骤2: | ||
步骤3: | ||
Ni/SDC体系CO2电化学还原反应机理[ | 对应电荷转移步骤的电化学表达式 | 推测CO电化学氧化反应机理 |
---|---|---|
步骤1: | ||
步骤2: | ||
步骤3: | ||
CO2在Pt底部吸附 | CO2在Pt顶部吸附 | 推测CO电化学氧化反应机理 |
---|---|---|
CO2在Pt底部吸附 | CO2在Pt顶部吸附 | 推测CO电化学氧化反应机理 |
---|---|---|
CO直接(电)氧化不形成碳酸盐结构 | CO形成碳酸盐结构 | ||
---|---|---|---|
氧化反应[ | 电化学氧化[ | 氧化反应[ | 电化学氧化[ |
CO直接(电)氧化不形成碳酸盐结构 | CO形成碳酸盐结构 | ||
---|---|---|---|
氧化反应[ | 电化学氧化[ | 氧化反应[ | 电化学氧化[ |
1 | DUAN Chuancheng, TONG Jianhua, SHANG Meng, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures[J]. Science, 2015, 349(6254): 1321-1326. |
2 | 李小勇, 宁小亮, 徐传伟, 等. SOFC氧离子导体电解质材料的研究进展及性能优化策略[J]. 现代技术陶瓷, 2023, 44(1): 33-42. |
LI Xiaoyong, NING Xiaoliang, XU Chuanwei, et al. Research progress and performance optimization strategies of SOFC oxygen ion conductor electrolyte materials[J]. Advanced Ceramics, 2023, 44(1): 33-42. | |
3 | MONTINI Tiziano, MELCHIONNA Michele, MONAI Matteo, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041. |
4 | FAN Liangdong, WANG Chengyang, CHEN Mingming, et al. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells[J]. Journal of Power Sources, 2013, 234: 154-174. |
5 | IDERIS Asmida, CROISET Eric, PRITZKER Mark. Ni-Samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9180-9187. |
6 | YAO Xueli, LI Ping, YU Baolong, et al. Hydrothermally synthesized NiO-samarium doped ceria nano-composite as an anode material for intermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(34): 22192-22200. |
7 | SHI Nan, YU Shancheng, CHEN Sainan, et al. Dense thin YSZ electrolyte films prepared by a vacuum slurry deposition technique for SOFCs[J]. Ceramics International, 2017, 43(1): 182-186. |
8 | ABDULWAHAB Khadijat Olabisi, KHAN Mohammad Mansoob, JENNINGS James Robert. Doped ceria nanomaterials: Preparation, properties, and uses[J]. ACS Omega, 2023, 8(34): 30802-30823. |
9 | KANNAN Karthik, RADHIKA D, NESARAJ A S, et al. A simple chemical precipitation of ceria based (Sm doped-CGO) nanocomposite: Structural and electrolytic behaviour for LT-SOFCs[J]. SN Applied Sciences, 2020, 2(7): 1220. |
10 | DENG Tian, ZHANG Chongrong, XIAO Yuyuan, et al. One-step synthesis of samarium-doped ceria and its CO catalysis[J]. Bulletin of Materials Science, 2015, 38(5): 1149-1154. |
11 | 张伟, 魏嘉璐, JOSÉ Antonio Alonso, 等. 碳基固体氧化物燃料电池研究进展[J]. 洁净煤技术, 2024, 30(1): 239-264. |
ZHANG Wei, WEI Jialu, JOSé Antonio Alonso, et al. Recent advances in hydrocarbon-fueled solid oxide fuel cells[J]. Clean Coal Technology, 2024, 30(1): 239-264. | |
12 | YUN Jeong Woo, YOON Sung Pil, KIM Hee Su, et al. Effect of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4356-4366. |
13 | ARSHAD Muhammad Sarfraz, RAZA Rizwan, Ashfaq AHMAD M, et al. An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells[J]. Ceramics International, 2018, 44(1): 170-174. |
14 | ARTINI Cristina. Rare-earth-doped ceria systems and their performance as solid electrolytes: A puzzling tangle of structural issues at the average and local scale[J]. Inorganic Chemistry, 2018, 57(21): 13047-13062. |
15 | NAKAMURA Takashi, YASHIRO Keiji, KAIMAI Atsushi, et al. Determination of the reaction zone in gadolinia-doped ceria anode for solid oxide fuel cell[J]. Journal of the Electrochemical Society, 2008, 155(12): B1244. |
16 | LING Yihan, WANG Xinxin, MA Zhenkai, et al. Review of experimental and modelling developments for ceria-based solid oxide fuel cells free from internal short circuits[J]. Journal of Materials Science, 2020, 55(1): 1-23. |
17 | BAO Cheng, WANG Ying, FENG Daili, et al. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J]. Progress in Energy and Combustion Science, 2018, 66: 83-140. |
18 | MI Shuodong, BAO Cheng, Xin LYU. ReaxFF reactive molecular dynamics study on electrochemistry of H2/CO hybrid fuel in Ni/YSZ anode[J]. Fuel, 2023, 332: 125989. |
19 | CHUEH William C, HAO Yong, JUNG WooChul, et al. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes[J]. Nature Materials, 2011, 11(2): 155-161. |
20 | NOLAN Michael, PARKER Stephen C, WATSON Graeme W. CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics[J]. Physical Chemistry Chemical Physics, 2006, 8(2): 216-218. |
21 | ANDERSSON D A, SIMAK S I, JOHANSSON B, et al. Modeling of CeO2, Ce2O3, and CeO2- x in the LDA + U formalism[J]. Physical Review B, 2007, 75(3): 035109. |
22 | PATEL H C, TABISH A N, COMELLI F, et al. Oxidation of H2, CO and syngas mixtures on ceria and nickel pattern anodes[J]. Applied Energy, 2015, 154: 912-920. |
23 | TANG Yuanhao, ZHANG Hua, CUI Lixia, et al. First-principles investigation on redox properties of M-doped CeO2 (M=Mn, Pr, Sn, Zr)[J]. Physical Review B, 2010, 82(12): 125104. |
24 | SHI H, HUSSAIN T, AHUJA R, et al. Role of vacancies, light elements and rare-earth metals doping in CeO2 [J]. Scientific Reports, 2016, 6: 31345. |
25 | LAWRENCE Neil J, BREWER Joseph R, WANG Lu, et al. Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation[J]. Nano Letters, 2011, 11(7): 2666-2671. |
26 | TIAN Dong, LI Kongzhai, WEI Yonggang, et al. DFT insights into oxygen vacancy formation and CH4 activation over CeO2 surfaces modified by transition metals (Fe, Co and Ni)[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11912-11929. |
27 | CHEN Meina, GAO Huiying, ZHANG Lei, et al. Unlocking the nature of the co-doping effect on the ionic conductivity of CeO2-based electrolyte[J]. Ceramics International, 2019, 45(3): 3977-3985. |
28 | VAYSSILOV Georgi N, LYKHACH Yaroslava, MIGANI Annapaola, et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles[J]. Nature Materials, 2011, 10(4): 310-315. |
29 | BARON M, BONDARCHUK O, STACCHIOLA D, et al. Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeO x nanoparticles[J]. The Journal of Physical Chemistry C, 2009, 113(15): 6042-6049. |
30 | ZHANG Changjun, MICHAELIDES Angelos, JENKINS Stephen J. Theory of gold on ceria[J]. Physical Chemistry Chemical Physics, 2011, 13(1): 22-33. |
31 | LIU Zongyuan, LUSTEMBERG Pablo, GUTIÉRREZ Ramón A, et al. In situ investigation of methane dry reforming on metal/ceria(111) surfaces: Metal-support interactions and C—H bond activation at low temperature[J]. Angewandte Chemie International Edition, 2017, 56(42): 13041-13046. |
32 | HANNA J, LEE W Y, SHI Y, et al. Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels[J]. Progress in Energy and Combustion Science, 2014, 40: 74-111. |
33 | SHISHKIN M, ZIEGLER T. The electronic structure and chemical properties of a Ni/CeO2 Anode in a solid oxide fuel cell: A DFT +U Study[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21411-21416. |
34 | WANG Lei. Model development for gadolinia-doped ceria-based anodes in solid oxde fuel cells[D]. Maryland: University of Maryland, 2014. |
35 | BESSLER Wolfgang G, Jürgen WARNATZ, GOODWIN David G. The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes[J]. Solid State Ionics, 2007, 177(39/40): 3371-3383. |
36 | SHARMA Vaneet, CROZIER Peter A, SHARMA Renu, et al. Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria[J]. Catalysis Today, 2012, 180(1): 2-8. |
37 | MAHER Robert C, SHEARING Paul R, BRIGHTMAN Edward, et al. Reduction dynamics of doped ceria, nickel oxide, and cermet composites probed using in situ Raman spectroscopy[J]. Advanced Science, 2015, 3(1): 1500146. |
38 | WANG Shuang, ZHENG Minghao, LI Mei, et al. Synergistic effects towards H2 oxidation on the Cu-CeO2 electrode: A combination study with DFT calculations and experiments[J]. Journal of Materials Chemistry A, 2016, 4(15): 5745-5754. |
39 | ZHENG Minghao, WANG Shuang, LI Mei, et al. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell[J]. Journal of Power Sources, 2017, 345: 165-175. |
40 | JIANG Yunan, WANG Shuang, XU Jun, et al. Hydrogen oxidation pathway over Ni-ceria electrode: Combined study of DFT and experiment[J]. Frontiers in Chemistry, 2021, 8: 591322. |
41 | WANG Lei, YU Yi, GASKELL Karen J, et al. In operando X-ray photoelectron spectroscopy studies of H2 oxidation and H2O electrolysis on gadolinia-doped ceria electrodes[J]. Journal of Physics: Energy, 2021, 3(1): 014004. |
42 | KIM Hyunjoong, YOO Ji Mun, CHUNG Dong Young, et al. Design of a metal/oxide/carbon interface for highly active and selective electrocatalysis[J]. ACS Nano, 2022, 16(10): 16529-16538. |
43 | TANG Chunmei, YAO Yao, WANG Ning, et al. Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives[J]. InfoMat, 2024, 6(3): e12515. |
44 | MIN YOU Hyo, NAGASAWA Tsuyoshi, LEE Jae WOO, et al. Mechanistic study of oxygen reduction reaction on a Pd/CeO2-ZrO2 catalyst[J]. Applied Surface Science, 2024, 648: 159045. |
45 | MIZUSAKI Junichiro, TAGAWA Hiroaki, SAITO Takatoshi, et al. Preparation of nickel pattern electrodes on YSZ and their electrochemical properties in H2-H2O atmospheres[J]. Journal of the Electrochemical Society, 2019, 141(8): 2129-2134. |
46 | HAPPEL M, MYSLIVEČEK J, JOHÁNEK V, et al. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts[J]. Journal of Catalysis, 2012, 289: 118-126. |
47 | BERNAL S, CALVINO J J, CIFREDO G A, et al. The key role of highly dispersed rhodium in the chemistry of hydrogen-ceria systems[J]. Journal of the Chemical Society, Chemical Communications, 1992(6): 460-462. |
48 | BRUCE Linda A, HOANG Manh, HUGHES Anthony E, et al. Surface area control during the synthesis and reduction of high area ceria catalyst supports[J]. Applied Catalysis A: General, 1996, 134(2): 351-362. |
49 | CHEN Hsin-Tsung, CHOI Yong Man, LIU Meilin, et al. A theoretical study of surface reduction mechanisms of CeO2(111) and (110) by H2 [J]. ChemPhysChem, 2007, 8(6): 849-855. |
50 | DECALUWE Steven C, GRASS Michael E, ZHANG Chunjuan, et al. In situ characterization of ceria oxidation states in high-temperature electrochemical cells with ambient pressure XPS[J]. The Journal of Physical Chemistry C, 2010, 114(46): 19853-19861. |
51 | ZHANG Chunjuan, YU Yi, GRASS Michael E, et al. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells[J]. Journal of the American Chemical Society, 2013, 135(31): 11572-11579. |
52 | PATEL H C, TABISH A N, ARAVIND P V. Modelling of elementary kinetics of H2 and CO oxidation on ceria pattern cells[J]. Electrochimica Acta, 2015, 182: 202-211. |
53 | Delia FERNÁNDEZ-TORRE, CARRASCO Javier, Verónica GANDUGLIA-PIROVANO M, et al. Hydrogen activation, diffusion, and clustering on CeO2(111): A DFT+U study[J]. The Journal of Chemical Physics, 2014, 141(1): 014703. |
54 | ZHU Houyu, HOU Yongchun, REN Hao, et al. Theoretical investigation on H2 oxidation mechanisms over pristine and Sm-doped CeO2(111) surfaces[J]. Applied Surface Science, 2020, 511: 145388. |
55 | LIU Dongyuan, ZHU Houyu, YUAN Saifei, et al. Understanding the oxygen-vacancy-related catalytic cycle for H2 oxidation on ceria-based SOFC anode and the promotion effect of lanthanide doping from theoretical perspectives[J]. Applied Surface Science, 2022, 576: 151803. |
56 | SCHWEKE D, SHELLY L, DAVID R BEN, et al. Comprehensive study of the ceria–H2 system: Effect of the reaction conditions on the reduction extent and intermediates[J]. The Journal of Physical Chemistry C, 2020, 124(11): 6180-6187. |
57 | CHEN Bohao, MA Yunsheng, DING Liangbing, et al. Reactivity of hydroxyls and water on a CeO2(111) thin film surface: The role of oxygen vacancy[J]. The Journal of Physical Chemistry C, 2013, 117(11): 5800-5810. |
58 | RAWADIEH Saleh E, ALTARAWNEH Mohammednoor, ALTARAWNEH Ibrahem S, et al. A kinetic model for evolution of H2 and CO over Zr-doped ceria[J]. Molecular Catalysis, 2020, 498: 111256. |
59 | WANG Jenshi B, TSAI De-Hao, HUANG Ta-Jen. Synergistic catalysis of carbon monoxide oxidation over copper oxide supported on samaria-doped ceria[J]. Journal of Catalysis, 2002, 208(2): 370-380. |
60 | ZHU Huaqing, QIN Zhangfeng, SHAN Wenjuan, et al. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. Journal of Catalysis, 2005, 233(1): 41-50. |
61 | LUO Jinyong, MENG Ming, ZHA Yuqing, et al. Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO-CeO2 and Co3O4-CeO2 catalysts[J]. The Journal of Physical Chemistry C, 2008, 112(23): 8694-8701. |
62 | JIA Aiping, JIANG Shiyu, LU Jiqing, et al. Study of catalytic activity at the CuO-CeO2 interface for CO oxidation[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21605-21610. |
63 | ROYER Sébastien, DUPREZ Daniel. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. ChemCatChem, 2011, 3(1): 24-65. |
64 | KIM Hyun You, LEE Hyuck Mo, HENKELMAN Graeme. CO oxidation mechanism on CeO2-supported Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(3): 1560-1570. |
65 | GHOSH Prasenjit, FARNESI CAMELLONE Matteo, FABRIS Stefano. Fluxionality of Au clusters at ceria surfaces during CO oxidation: Relationships among reactivity, size, cohesion, and surface defects from DFT simulations[J]. The Journal of Physical Chemistry Letters, 2013, 4(14): 2256-2263. |
66 | SONG Weiyu, JANSEN Antonius P J, HENSEN Emiel J M. A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms[J]. Faraday Discussions, 2013, 162: 281-292. |
67 | SONG Weiyu, SU Yaqiong, HENSEN Emiel J M. A DFT study of CO oxidation at the Pd-CeO2(110) interface[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27505-27511. |
68 | HINOKUMA Satoshi, YAMASHITA Noriko, KATSUHARA Yasuo, et al. CO oxidation activity of thermally stable Fe-Cu/CeO2 catalysts prepared by dual-mode arc-plasma process[J]. Catalysis Science & Technology, 2015, 5(8): 3945-3952. |
69 | CENTENO Miguel, RAMÍREZ REINA Tomás, IVANOVA Svetlana, et al. Au/CeO2 catalysts: Structure and CO oxidation activity[J]. Catalysts, 2016, 6(10): 158. |
70 | YUAN Kun, GUO Yu, HUANG Ling, et al. Tunable electronic metal-support interactions on ceria-supported noble-metal nanocatalysts in controlling the low-temperature CO oxidation activity[J]. Inorganic Chemistry, 2021, 60(7): 4207-4217. |
71 | HUANG Min, FABRIS Stefano. CO adsorption and oxidation on ceria surfaces from DFT+U calculations[J]. The Journal of Physical Chemistry C, 2008, 112(23): 8643-8648. |
72 | YANG Zongxian, Tom K WOO, BAUDIN Micael, et al. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study[J]. The Journal of Chemical Physics, 2004, 120(16): 7741-7749. |
73 | NOLAN Michael, WATSON Graeme W. The surface dependence of CO adsorption on ceria[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16600-16606. |
74 | CHEN Fendy, LIU Di, ZHANG Jie, et al. A DFT+U study of the lattice oxygen reactivity toward direct CO oxidation on the CeO2(111) and (110) surfaces[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16573-16580. |
75 | POLYCHRONOPOULOU Kyriaki, ALKHOORI Ayesha A, EFSTATHIOU Angelos M, et al. Design aspects of doped CeO2 for low-temperature catalytic CO oxidation: Transient kinetics and DFT approach[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22391-22415. |
76 | VENÂNCIO Selma Aparecida, DE MIRANDA Paulo Emilio Valadão. Ni-free SOFC anode material with thermal and redox stabilities for the direct utilization of ethanol[J]. Catalysts, 2023, 13(1): 134. |
77 | KAMBOJ Vipin, RAYCHOWDHURY Soham, SHIVAM Shivam, et al. Enhancement in CO2 electroreduction upon Pr infiltration of ceria electrodes[J]. ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2024-swljj . |
78 | HAHN Konstanze R, SEITSONEN Ari P, IANNUZZI Marcella, et al. Functionalization of CeO2(111) by deposition of small Ni clusters: Effects on CO2 adsorption and O vacancy formation[J]. ChemCatChem, 2015, 7(4): 625-634. |
79 | REN Bohua, LI Jingde, WEN Guobin, et al. First-principles based microkinetic modeling of CO2 reduction at the Ni/SDC cathode of a solid oxide electrolysis cell[J]. The Journal of Physical Chemistry C, 2018, 122(37): 21151-21161. |
80 | YANG Yi, WANG Shuang, JIANG Yunan, et al. CO2 activation and reduction on Pt-CeO2-based catalysts[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17092-17101. |
81 | YU Yi, MAO Baohua, GELLER Aaron, et al. CO2 activation and carbonate intermediates: An operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells[J]. Physical Chemistry Chemical Physics, 2014, 16(23): 11633-11639. |
82 | FENG Zhuoluo A, MACHALA Michael L, CHUEH William C. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2- x : Coupling between Ce3+ and carbonate adsorbates[J]. Physical Chemistry Chemical Physics, 2015, 17(18): 12273-12281. |
83 | SHAUR Ahmad, DRAZKOWSKI Michel, ZHU Shaochen, et al. A single-phase gadolinium-doped ceria cathode for highly efficient CO2 electrolysis[J]. Journal of Materials Chemistry A, 2023, 11(45): 25020-25030. |
84 | SALA Elena Marzia, MAZZANTI Nicola, CHIABRERA Francesco M, et al. Unravelling the role of dopants in the electrocatalytic activity of ceria towards CO2 reduction in solid oxide electrolysis cells[J]. Physical Chemistry Chemical Physics, 2023, 25(4): 3457-3471. |
[1] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[2] | ZHU Hao, LIU Hanfei, GAO Yuan, HUANG Yiping, FEI Xiaocheng, HAN Weiqing. Effect of salt on electrocatalytic performance and mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 571-580. |
[3] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[4] | ZOU Pengxiang, ZHANG Mingyang, ZHU Wenjie, GUO Yaojun, CHENG Jie, ZHAO Yanshu, YUAN Yingchun. Optimization of inlet structure of liquid-liquid impinging stream cyclone reactor for epoxidation of fatty acid methyl ester based on CFD [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 166-173. |
[5] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
[6] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
[7] | HU Xing, LIU Yi, DU Zexue. Research progress of catalyst for direct synthesis of epichlorohydrin from 3-chloropropylene [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 325-334. |
[8] | ZHANG Hao, LIU Shiyu, SHEN Weihua, FANG Yunjin. Dehydration of urea to cyanamide with Ca-ZSM-5 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 365-373. |
[9] | MA Guixuan, XU Zitong, XIAO Zhihua, Ning Guoqing, WEI Qiang, XU Chunming. O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 443-456. |
[10] | XIU Haoran, WANG Yungang, BAI Yanyuan, LIU Tao, ZHANG Xingbang, ZHANG Yijia. Pilot test of H2O2 low temperature catalytic oxidation for desulfurization and denitrification [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4941-4950. |
[11] | LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062. |
[12] | WU Jianyang, WANG Runa, CHEN Yao, SHEN Lanyao, YU Yongli, JIANG Ning, QIU Jingyi, ZHOU Henghui. Preparation process of high nickel cathode precursor for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5079-5085. |
[13] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[14] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[15] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |