Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5049-5062.DOI: 10.16085/j.issn.1000-6613.2023-1478
• Materials science and technology • Previous Articles
LIANG Hongcheng1,2(), ZHAO Dongni1,2(), QUAN Yin1,2, LI Jingni1,2, HU Xinyi1,2
Received:
2023-08-23
Revised:
2023-12-09
Online:
2024-09-30
Published:
2024-09-15
Contact:
ZHAO Dongni
梁宏成1,2(), 赵冬妮1,2(), 权银1,2, 李敬妮1,2, 胡欣怡1,2
通讯作者:
赵冬妮
作者简介:
梁宏成(1999—),男,硕士研究生,研究方向为电化学储能技术与工程。E-mail: LiangHC_Z@163.com。
基金资助:
CLC Number:
LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062.
梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1478
1 | XU Kang. Electrolytes, interfaces and interphases fundamentals and applications in batteries[M]. United Kingdom: The Royal Society of Chemistry, 2023. |
2 | ZHAO Qing, STALIN Sanjuna, ARCHER Lynden A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
3 | YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338. |
4 | ZHANG Zhenyu, SMITH Keenan, JERVIS Rhodri, et al. Operando electrochemical atomic force microscopy of solid-electrolyte interphase formation on graphite anodes: The evolution of SEI morphology and mechanical properties[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35132-35141. |
5 | KITZ Paul G, LACEY Matthew J, Petr NOVÁK, et al. Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2020, 477: 228567. |
6 | LIU Wei, LIU Pengcheng, MITLIN David. Solid electrolyte interphases: Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43): 2002297-2002321. |
7 | SONG Ge, YI Zonglin, SU Fangyuan, et al. New insights into the mechanism of LiDFBOP for improving the low-temperature performance via the rational design of an interphase on a graphite anode[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40042-40052. |
8 | HUANG Yingshan, WANG Chaonan, Haifeng LYU, et al. Bifunctional interphase promotes Li+ de-solvation and transportation enabling fast-charging graphite anode at low temperature[J]. Advanced Materials, 2023, 36(13): 2308675. |
9 | CHANG Zhi, QIAO Yu, DENG Han, et al. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery[J]. Joule, 2020, 4(8): 1776-1789. |
10 | MENG Y Shirley, SRINIVASAN Venkat, XU Kang. Designing better electrolytes[J]. Science, 2022, 378(6624): eabq3750. |
11 | LI Fang, HE Jian, LIU Jiandong, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(12): 6600-6608. |
12 | ZHANG Weidong, SHEN Zeyu, LI Siyuan, et al. Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: Toward practical Li-metal full batteries[J]. Advanced Functional Materials, 2020, 30(39): 2003800-2003808. |
13 | GEHRLEIN Lydia, LEIBING Christian, PFEIFER Kristina, et al. Glyoxylic acetals as electrolytes for Si/graphite anodes in lithium-ion batteries[J]. Electrochimica Acta, 2022, 424: 140642. |
14 | GHAUR Adjmal, PESCHEL Christoph, DIENWIEBEL Iris, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(26): 2203503-2203517. |
15 | ZHAO Dongni, WANG Jie, WANG Peng, et al. Regulating the composition distribution of layered SEI film on Li-ion battery anode by LiDFBOP[J]. Electrochimica Acta, 2020, 337: 135745. |
16 | WANG Ruo, LI Jiawei, HAN Bing, et al. Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries[J]. Journal of Energy Chemistry, 2024, 88: 532-542. |
17 | SUN Qujiang, CAO Zhen, MA Zheng, et al. Discerning roles of interfacial model and solid electrolyte interphase layer for stabilizing antimony anode in lithium-ion batteries[J]. ACS Materials Letters, 2022, 4(11): 2233-2243. |
18 | SONG Youzhi, WANG Li, SHENG Li, et al. The significance of mitigating crosstalk in lithium-ion batteries: A review[J]. Energy & Environmental Science, 2023, 16(5): 1943-1963. |
19 | TAN Sha, KIM Ju-Myung, CORRAO Adam, et al. Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes[J]. Nature Nanotechnology, 2023, 18(3): 243-249. |
20 | KIM Minkyu, HARVEY Steven P, HUEY Zoey, et al. A new mechanism of stabilizing SEI of Si anode driven by crosstalk behavior and its potential for developing high performance Si-based batteries[J]. Energy Storage Materials, 2023, 55: 436-444. |
21 | LI Zhaojuan, XU Fei, LI Chunlei, et al. Influences and mechanisms of water on a solid electrolyte interphase film for lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(2): 1199-1207. |
22 | FENG Guangxia, JIA Hao, SHI Yaping, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. |
23 | SUN Shuyu, YAO Nao, JIN Chengbin, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase[J]. Angewandte Chemie International Edition, 2022, 61(42): 8743-8751. |
24 | 周丹, 梁风, 姚耀春. 锂离子电池电解液负极成膜添加剂的研究进展[J]. 化工进展, 2016, 35(5): 1477-1483. |
ZHOU Dan, LIANG Feng, YAO Yaochun. Research progress of negative film-forming additives in electrolyte for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1477-1483. | |
25 | WANG Yamin, LIU Yingchun, TU Yaoquan, et al. Reductive decomposition of solvents and additives toward solid-electrolyte interphase formation in lithium-ion battery[J]. The Journal of Physical Chemistry C, 2020, 124(17): 9099-9108. |
26 | HEISKANEN Satu Kristiina, KIM Jongjung, LUCHT Brett L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
27 | Janika WAGNER-HENKE, KUAI Dacheng, GERASIMOV Michail, et al. Knowledge-driven design of solid-electrolyte interphases on lithium metal via multiscale modelling[J]. Nature Communications, 2023, 14(1): 6823. |
28 | 罗倩, 巢亚军, 渠冰, 等. 锂离子电池中SEI膜的研究方法[J]. 电源技术, 2015, 39(5): 1086-1090. |
LUO Qian, CHAO Yajun, QU Bing, et al. Research technologies of solid electrolyte interphase in Li-ion batteries[J]. Chinese Journal of Power Sources, 2015, 39(5): 1086-1090. | |
29 | XU Kang. Interfaces and interphases in batteries[J]. Journal of Power Sources, 2023, 559: 232652. |
30 | VON KOLZENBERG Lars, WERRES Martin, TETZLOFF Jonas, et al. Transition between growth of dense and porous films: Theory of dual-layer SEI[J]. Physical Chemistry Chemical Physics, 2022, 24(31): 18469-18476. |
31 | YANG Poyu, Chunwei PAO. Molecular simulations of the microstructure evolution of solid electrolyte interphase during cyclic charging/discharging[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5017-5027. |
32 | ZHANG Zewen, LI Yuzhang, XU Rong, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70. |
33 | ZHANG Qiankui, ZHANG Xueqiang, WAN Jing, et al. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries[J]. Nature Energy, 2023, 8(7): 725-735. |
34 | WAN Jing, HAO Yang, SHI Yang, et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries[J]. Nature Communications, 2019, 10: 3265. |
35 | HUANG William, WANG Hansen, BOYLE David T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Letters, 2020, 5(4): 1128-1135. |
36 | HE Junwu, GU Yu, WANG Weiwei, et al. Structures of solid-electrolyte interphases and impacts on initial-stage lithium deposition in pyrrolidinium-based ionic liquids[J]. ChemElectroChem, 2021, 8: 62-69. |
37 | LI Yunyong, Changzhi OU, ZHU Junlu, et al. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20(3): 2034-2046. |
38 | ZHU Chenbo, FAN Chenghao, EMILIANO Cortés, et al. In situ surface-enhanced Raman spectroelectrochemistry reveals the molecular conformation of electrolyte additives in Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(35): 20024-20031. |
39 | WANG Peng, YAN De, WANG Caiyun, et al. Study of the formation and evolution of solid electrolyte interface via in situ electrochemical impedance spectroscopy[J]. Applied Surface Science, 2022, 596: 153572. |
40 | AHMAD Zeeshan, VENTURI Victor, HAFIZ Hasnain, et al. Interfaces in solid electrolyte interphase: Implications for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(21): 11301-11309. |
41 | Stefany ANGARITA-GOMEZ, BALBUENA Perla B. Ion motion and charge transfer through a solid-electrolyte interphase: An atomistic view[J]. Journal of Solid State Electrochemistry, 2022, 26(9): 1931-1939. |
42 | HAO Feng, VISHNUGOPI Bairav S, WANG Hua, et al. Chemomechanical interactions dictate lithium surface diffusion kinetics in the solid electrolyte interphase[J]. Langmuir, 2022, 38(18): 5472-5480. |
43 | HU Taiping, TIAN Jianxin, DAI Fuzhi, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases[J]. Journal of the American Chemical Society, 2023, 145(2): 1327-1333. |
44 | YILDIRIM Handan, KINACI Alper, CHAN Maria K Y, et al. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 18985-18996. |
45 | LI Chilin, MAIER Joachim. Ionic space charge effects in lithium fluoride thin films[J]. Solid State Ionics, 2012, 225: 408-411. |
46 | ZHANG Qinglin, PAN Jie, LU Peng, et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries[J]. Nano Letters, 2016, 16(3): 2011-2016. |
47 | TAN Jian, MATZ John, DONG Pei, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046-2100071. |
48 | DING Junfan, XU Rui, YAN Chong, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
49 | SHI Siqi, LU Peng, LIU Zhongyi, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
50 | RAMASUBRAMANIAN Ajaykrishna, YURKIV Vitaliy, FOROOZAN Tara, et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. |
51 | YU Yikang, Hyeongjun KOH, ZHANG Zisheng, et al. Kinetic pathways of fast lithium transport in solid electrolyte interphases with discrete inorganic components[J]. Energy & Environmental Science, 2023, 16(12): 5904-5915. |
52 | DING Jieying, WEN Yucheng, LAN Xuexia, et al. Roles of trimethyl borate in constructing an interphase on Li anode: Angel or demon?[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6768-6776. |
[1] | GAO Yuli, WANG Hongqiu, HUANG Gexing, XIAN Nanying, SHI Xiaoyu. Research progress and the industrialization of all-solid-state battery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4767-4778. |
[2] | XU Bing, YANG Xiaorong, LIU Yuehua, HE Feng, ZHOU Xing, WANG Zhi, GONG Xuzhong. Preparation of flexible electrothermal film by natural flake graphite spherical tail material [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4534-4541. |
[3] | SONG Jiakai, KONG Lingzhen, CHEN Jiaqing, SUN Huan, LI Qi, LI Changhe, WANG Sicheng, KONG Biao. Liquid film flow and separation characteristics in the swirl separation section of a tubular deliquidiser [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4297-4306. |
[4] | YANG Guang, JIANG Ruiting, ZHANG Yue, FU Zijian, LIU Wei. Application of vanadium pentoxide/carbon nanocomposites in supercapacitors [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3857-3871. |
[5] | SHAO Wei, MA Zhuang, ZHENG Hongwei, LIU Guangju, GAO Xiang, XIE Jian, HE Qinggang. Recent advances of organic materials for aqueous rechargeable batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3872-3890. |
[6] | LUO Zhen, WANG Qingji, WANG Zhansheng, YANG Xueying, XIE Jiacai, WANG Hao. Strong oxidation coupled short range treatment of refining industry contaminated sites extraction water [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4155-4163. |
[7] | WANG Qingtai, ZHANG Sai, WANG Jiemin. Numerical simulation for non-uniform compression of porous electrodes in vanadium flow batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2940-2949. |
[8] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[9] | WANG Baoshan, CHEN Xiaojie, ZHAO Peiyu, ZHANG Xu. Research progress on the treatment of refractory organic chemical wastewater using three-dimensional biofilm electrodes [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3359-3373. |
[10] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[11] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[12] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[13] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[14] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[15] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |