Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2568-2575.DOI: 10.16085/j.issn.1000-6613.2023-2130
• New and renewable energy • Previous Articles
LI Si1,2(), TAO Yiyue1,2, XIAO Zhenchong1,2, ZHANG Liang1,2(), LI Jun1,2, ZHU Xun1,2, LIAO Qiang1,2
Received:
2023-12-01
Revised:
2024-04-16
Online:
2024-06-15
Published:
2024-05-15
Contact:
ZHANG Liang
李思1,2(), 陶艺月1,2, 肖振翀1,2, 张亮1,2(), 李俊1,2, 朱恂1,2, 廖强1,2
通讯作者:
张亮
作者简介:
李思(2000—),女,硕士研究生,研究方向为电化学能源转化。E-mail:lisi@stu.cqu.edu.cn。
基金资助:
CLC Number:
LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575.
李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2130
1 | WANG Jiajun, LI Xiaopeng, CUI Bingfeng, et al. A review of non-noble metal-based electrocatalysts for CO2 electroreduction[J]. Rare Metals, 2021, 40(11): 3019-3037. |
2 | MARTINA Peters, Köhler BURKHARD, WILHELM Kuckshinrichs, et al. Chemical technologies for exploiting and recycling carbon dioxide into the value chain[J]. ChemSusChem, 2011, 4(9): 1216-1240. |
3 | CORONADO Juan M, ALICIA Bayón. Catalytic enhancement of production of solar thermochemical fuels: Opportunities and limitations[J]. Physical Chemistry Chemical Physics: PCCP, 2023, 25(26): 17092-17106. |
4 | ROMERO Manuel, STEINFELD Aldo. Concentrating solar thermal power and thermochemical fuels[J]. Energy & Environmental Science, 2012, 5(11): 9234-9245. |
5 | SONG Chunfeng, LIU Qingling, QI Yun, et al. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review[J]. International Journal of Greenhouse Gas Control, 2019, 88: 109-117. |
6 | 王玉杰, 张艳梅, 栾金义, 等. 酶催化固碳过程及其强化技术研究进展[J]. 化工进展, 2024, 43(1): 232-245. |
WANG Yujie, ZHANG Yanmei, LUAN Jinyi, et al. Enzyme-catalyzed carbon sequestration processes and enhancement technologies[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 232-245. | |
7 | LI Jian, ZHU Lei, TUNG Chen-Ho, et al. Engineering graphdiyne for solar photocatalysis[J]. Angewandte Chemie (International Ed in English), 2023, 62(22): e202301384. |
8 | WANG Fangmu, LU Zhehong, GUO Hu, et al. Plasmonic photocatalysis for CO2 reduction: Advances, understanding and possibilities[J]. Chemistry, 2023, 29(25): e202202716. |
9 | PAN Fuping, YANG Yang. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science, 2020, 13(8): 2275-2309. |
10 | SAHA Paramita, AMANULLAH Sk, Abhishek DEY. Selectivity in electrochemical CO2 reduction[J]. Accounts of Chemical Research, 2022, 55(2): 134-144. |
11 | ZHANG Fang, LIU Jia, YANG Wulin, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Science, 2015, 8(1): 343-349. |
12 | LU Zhiqiang, SHI Yu, ZHANG Liang, et al. Ammonia crossover in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Journal of Power Sources, 2022, 548: 232085. |
13 | SHI Yu, ZHANG Liang, ZHANG Yongsheng, et al. Construction of a hierarchical porous surface composite electrode by dynamic hydrogen bubble template electrodeposition for ultrahigh-performance thermally regenerative ammonia-based batteries[J]. Chemical Engineering Journal, 2021, 423: 130339. |
14 | SHI Yu, ZHANG Liang, LI Jun, et al. Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity[J]. Renewable Energy, 2020, 159: 162-171. |
15 | LI Dong, ZHANG Yongsheng, SHI Yu, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D electrodes composed of copper rod arrays[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 12855-12863. |
16 | SHI Yu, LI Dong, AN Yichao, et al. Power generation enhancement of a membrane-free thermally regenerative battery induced by the density difference of electrolytes[J]. Applied Energy, 2023, 344: 121302. |
17 | ZHANG Liang, LI Yanxiang, ZHU Xun, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415. |
18 | CHEN Pengyu, ZHANG Liang, SHI Yu, et al. Biomass waste-derived hierarchical porous composite electrodes for high-performance thermally regenerative ammonia-based batteries[J]. Journal of Power Sources, 2022, 517: 230719. |
19 | CHEN Pengyu, SHI Yu, ZHANG Liang, et al. Performance of a thermally regenerative battery with 3D-printed Cu/C composite electrodes: Effect of electrode pore size[J]. Industrial & Engineering Chemistry Research, 2020, 59(49): 21286-21293. |
20 | ZHANG Yongsheng, SHI Yu, ZHANG Liang, et al. Graphene oxide modified membrane for alleviated ammonia crossover and improved electricity generation in thermally regenerative batteries[J]. Chinese Chemical Letters, 2023, 34(2): 107704. |
21 | AN Yichao, ZHANG Yongsheng, SHI Yu, et al. Alleviated ammonia crossover in thermally regenerative ammonia-based batteries by optimizing the introduced intermediate-chamber[J]. Applied Energy, 2023, 349: 121657. |
22 | MAYE Sunny, GIRAULT Hubert H, PELJO Pekka. Thermally regenerative copper nanoslurry flow batteries for heat-to-power conversion with low-grade thermal energy[J]. Energy & Environmental Science, 2020, 13(7): 2191-2199. |
23 | 李洞, 石雨, 张亮, 等. 采用有机溶剂的热再生电池性能[J]. 化工进展, 2022, 41(12): 6302-6309. |
LI Dong, SHI Yu, ZHANG Liang, et al. Performance of thermal regenerative batteries with organic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6302-6309. | |
24 | 李洞, 王倩倩, 张亮, 等. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
LI Dong, WANG Qianqian, ZHANG Liang, et al. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. | |
25 | XIAO Zhenchong, SHI Yu, ZHANG Liang, et al. Performance of a non-aqueous nanofluid thermally regenerative flow battery for electrical energy recovery from low-grade waste heat[J]. Applied Thermal Engineering, 2024, 236: 121696. |
26 | ZHANG Liang, LU Zhiqiang, CHEN Pengyu, et al. An environmentally friendly gradient treatment system of copper-containing wastewater by coupling thermally regenerative battery and electrodeposition cell[J]. Separation and Purification Technology, 2022, 295: 121243. |
27 | WANG Weiguang, SHU Gequn, TIAN Hua, et al. Removals of Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Ag(Ⅰ) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries[J]. Separation and Purification Technology, 2020, 235: 116230. |
28 | ZHANG Liang, CHEN Pengyu, LI Dong, et al. The coupled removal of heavy metals from electroplating wastewater induced stable electricity generation during long-time discharging in a three-chamber thermally regenerative battery[J]. Journal of Power Sources, 2023, 557: 232524. |
29 | 唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810. |
TANG Zhiqiang, ZHANG Liang, ZHU Xun, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery[J]. CIESC Journal, 2019, 70(12): 4804-4810. | |
31 | WANG Weiguang, TIAN Hua, HUO Dongxing, et al. Review of thermally regenerative batteries based on redox reaction and distillation for harvesting low-grade heat as electricity[J]. Chemical Engineering Journal, 2023, 474: 145503. |
32 | ZHANG Zhongshuo, XIE Yi, WANG Ying. What matters in the emerging application of CO2 electrolysis[J]. Current Opinion in Electrochemistry, 2022, 34: 101012. |
33 | Chulwan LIM, LEE Woong Hee, WON Jong Ho, et al. Enhancement of catalytic activity and selectivity for the gaseous electroreduction of CO2 to CO: Guidelines for the selection of carbon supports[J]. Advanced Sustainable Systems, 2022, 6(3): 2100216. |
34 | FAN Shuai, FAN Zihao, CHENG Huiyuan, et al. Integrated Sn/CNT@N-C hierarchical porous gas diffusion electrode by phase inversion for electrocatalytic reduction of CO2 [J]. Electrochimica Acta, 2022, 403: 139584. |
35 | 于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4): 1815-1824. |
YU Fengshou, ZHANG Luhua. Structure-performance relationship of Cu-based nanocatalyst for electrochemical CO2 reduction[J]. CIESC Journal, 2021, 72(4): 1815-1824. | |
36 | PU Ying, WU Gaoying, WANG Yue, et al. Surface coating combined with in situ cyclic voltammetry to enhance the stability of gas diffusion electrodes for electrochemical CO2 reduction[J]. The Science of the Total Environment, 2024, 918: 170758. |
37 | MAHYOUB Samah A, QARAAH Fahim A, CHEN Chengzhen, et al. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO[J]. Sustainable Energy & Fuels, 2020, 4(1): 50-67. |
38 | ZHANG Shun, MO Zhenzhen, WANG Jie, et al. Ultra-stable oxygen species in Ag nanoparticles anchored on g-C3N4 for enhanced electrochemical reduction of CO2 [J]. Electrochimica Acta, 2021, 390: 138831. |
39 | 车钰灿, 程鹏玮, 周毅, 等. 室温快速合成Ag基金属有机骨架材料用于电催化还原CO2 [J]. 无机化学学报, 2023, 39(6): 1005-1013. |
CHE Yucan, CHENG Pengwei, ZHOU Yi, et al. Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(6): 1005-1013. | |
40 | 阳平坚, 彭栓, 王静, 等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J]. 中国环境科学, 2024, 44(1): 404-416. |
YANG Pingjian, PENG Shuan, WANG Jing, et al. Carbon Capture, Utilization and Storage(CCUS) technology development status and application prospects[J]. China Environmental Science, 2024, 44(1): 404-416. |
[1] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[2] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[3] | QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030. |
[4] | LIU Shida, WANG Haiyan, HOU Shuandi, LIU Zhongsheng, LIAO Changjian, WANG Kuanling. Recent advances in safely efficient deep emission reduction, recovery and thermal oxidation of VOCs from petrochemical storage tanks in China [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2063-2076. |
[5] | MA Wenjun, ZHANG Xu, LIU Mengshun, LIANG Zhiyuan. Research progress of novel hydrometallurgy in recycling cathode materials from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2077-2090. |
[6] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
[7] | LIU Han, QU Minglu, YE Zhendong, YANG Fan, HUANG Beijia, ZHANG Yaning, LIU Hongzhi. Evaluation of the thermal energy storage performance of calcium-magnesium binary composite salt hydrates [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1764-1773. |
[8] | LU Zhiqiang, SHI Yu, CHEN Pengyu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1224-1231. |
[9] | WU Jianyang, SHEN Lanyao, YU Yongli, WANG Runa, JIANG Ning, YANG Xinhe, QIU Jingyi, ZHOU Henghui. Preparation and performance optimization of high-nickel cathode materials in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1387-1394. |
[10] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[11] | CHU Zhenpu, CHEN Yumeng, LI Junguo, SUN Qingxuan, LIU Ke. Review on recycling of graphite anode from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1524-1534. |
[12] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
[13] | YU Songmin, JIN Hongbo, YANG Minghu, YU Haifeng, JIANG Hao. Synthesis and modification of F-doped olivine LiFe0.5Mn0.5PO4 cathode materials for Li-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. |
[14] | XIA Yinping, LI Zhoupeng, WANG Qianqian. Strategy toward positive electrode design for high-loading lithium-sulfur battery [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 364-375. |
[15] | YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |