Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3232-3239.DOI: 10.16085/j.issn.1000-6613.2023-0789
• Materials science and technology • Previous Articles
WAN Chengfeng1(), LI Zhida1, ZHANG Chunyue1, LU Lu1,2(
)
Received:
2023-05-11
Revised:
2023-09-06
Online:
2024-07-02
Published:
2024-06-15
Contact:
LU Lu
通讯作者:
路璐
作者简介:
万成凤(1999—),女,硕士研究生,研究方向为电催化。E-mail:21s054047@stu.hit.edu.cn。
基金资助:
CLC Number:
WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239.
万成凤, 李志达, 张春月, 路璐. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239.
催化剂 | HER过电位/mV | OER过电位/mV | 电流密度/mA·cm-2 | 参考文献 |
---|---|---|---|---|
SCNO@N-CNF | 169 | 247 | 10 | [ |
NiCoP@rGO | 297 | 340 | 20 | [ |
NiWO4/TM | 101 | 322 | 10 | [ |
SrTiFe0.9Pr0.1O6-δ | 278 | 182 | 10 | [ |
La0.5Sr0.5CoO3-δ/MoSe2 | 200 | 370 | 10 | [ |
NiFeP@N-CS | 186 | 216 | 10 | [ |
CoP/NCNHP | 115 | 310 | 10 | [ |
CoP2/RGO | 88 | 300 | 10 | [ |
MS-CoP x -350 | 190 | 300 | 10 | [ |
CoP NRs/Ti2C | 105 | 320 | 10 | 本研究 |
催化剂 | HER过电位/mV | OER过电位/mV | 电流密度/mA·cm-2 | 参考文献 |
---|---|---|---|---|
SCNO@N-CNF | 169 | 247 | 10 | [ |
NiCoP@rGO | 297 | 340 | 20 | [ |
NiWO4/TM | 101 | 322 | 10 | [ |
SrTiFe0.9Pr0.1O6-δ | 278 | 182 | 10 | [ |
La0.5Sr0.5CoO3-δ/MoSe2 | 200 | 370 | 10 | [ |
NiFeP@N-CS | 186 | 216 | 10 | [ |
CoP/NCNHP | 115 | 310 | 10 | [ |
CoP2/RGO | 88 | 300 | 10 | [ |
MS-CoP x -350 | 190 | 300 | 10 | [ |
CoP NRs/Ti2C | 105 | 320 | 10 | 本研究 |
1 | BARRETO L, MAKIHIRA A, RIAHI K. The hydrogen economy in the 21st century: A sustainable development scenario[J]. International Journal of Hydrogen Energy, 2003, 28(3): 267-284. |
2 | DINCER Ibrahim. Environmental impacts of energy[J]. Energy Policy, 1999, 27(14): 845-854. |
3 | MIDILLI A, AY M, DINCER I, et al. On hydrogen and hydrogen energy strategies Ⅰ: Current status and needs[J]. Renewable and Sustainable Energy Reviews, 2005, 9(3): 255-271. |
4 | SAZALI Norazlianie. Emerging technologies by hydrogen: A review[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771. |
5 | YU Xiaowen, ZHAO Jun, ZHENG Lirong, et al. Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum?[J]. ACS Energy Letters, 2018, 3(1): 237-244. |
6 | WANG Jing, LIAO Ting, WEI Zhongzhe, et al. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy[J]. Small Methods, 2021, 5(4): e2000988. |
7 | SU Jinzhan, ZHOU Jinglan, WANG Lu, et al. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting[J]. Science Bulletin, 2017, 62(9): 633-644. |
8 | WU Rui, XIAO Bing, GAO Qiang, et al. A Janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting[J]. Angewandte Chemie International Edition, 2018, 57(47): 15445-15449. |
9 | CHEN Peirong, YE Jianshan, WANG Hui, et al. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting[J]. Journal of Alloys and Compounds, 2021, 883: 160833. |
10 | YU Yadong, ZHOU Jian, SUN Zhimei. 2D transition-metal carbides: Novel 2D transition-metal carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction[J]. Advanced Functional Materials, 2020, 30(47): 2070311. |
11 | HUANG Xiaokang, GONG Li, XU Hui, et al. Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting[J]. Journal of Colloid and Interface Science, 2020, 569: 140-149. |
12 | ZONG Quan, YANG Hui, WANG Qianqian, et al. Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors[J]. Chemical Engineering Journal, 2019, 361: 1-11. |
13 | YAN Liang, ZHANG Bing, WU Shangyou, et al. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting[J]. Journal of Materials Chemistry A, 2020, 8(28): 14234-14242. |
14 | WANG Jian, CIUCCI Francesco. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2019, 254: 292-299. |
15 | YUE Qin, SUN Jiao, CHEN Shan, et al. Hierarchical mesoporous MXene-NiCoP electrocatalyst for water-splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18570-18577. |
16 | QIAO Jingyuan, KONG Lingqiao, XU Shaokang, Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries[J]. Energy Storage Materials, 2021, 43: 509-530. |
17 | MICHAEL Naguib, MURAT Kurtoglu, VOLKER Presser, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. |
18 | HU Mei, XIN Jin, LIU Zhenyu, et al. Preparation of TiO2 supported mxene catalyst for high efficiency hydrogen production[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2023, 38(2): 286-291. |
19 | WANG Yuwei, DU Rong, LI Zhuo, et al. Rationally designed CdS/Ti3C2 MXene electrocatalysts for efficient CO2 reduction in aqueous electrolyte[J]. Ceramics International, 2021, 47(20): 28321-28327. |
20 | GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
21 | YU Hong, WANG Yonghui, JING Yao, et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage[J]. Small, 2019, 15(25): 1901503. |
22 | PANG Sin-Yi, WONG Yuen-Ting, YUAN Shuoguo, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials[J]. Journal of the American Chemical Society, 2019, 141(24): 9610-9616. |
23 | XU Chuan, WANG Libin, LIU Zhibo, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14(11): 1135-1141. |
24 | YAN Ming, ZHANG Hao, DENG Yuxiao, et al. Preparation of fluorine-free MXene Ti3C2T x and its electrical properties[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2023, 38(2): 304-307. |
25 | ZHANG Wei, HAN Ning, LUO Jiangshui, et al. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting[J]. Small, 2022, 18(4): e2103561. |
26 | LIU Yunxiu, TIAN Yu, HAN Qiuyang, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application[J]. Chemical Engineering Journal, 2021, 410: 128209. |
27 | DENG Jiao, REN Pengju, DENG Dehui, et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction[J]. Energy & Environmental Science, 2014, 7(6): 1919-1923. |
28 | FU Huai qin, ZHOU Min, LIU Peng fei, et al. Hydrogen spillover-bridged volmer/tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential[J]. Journal of the American Chemical Society, 2022, 144(13): 6028-6039. |
29 | SURENDRAN Subramani, JESUDASS Sebastian Cyril, JANANI Gnanaprakasam, et al. Sulphur assisted nitrogen-rich CNF for improving electronic interactions in Co-NiO heterostructures toward accelerated overall water splitting[J]. Advanced Materials Technologies, 2023, 8(2): 2200572. |
30 | MANDAL Jyoti Ranjan, SINGH Khushboo, SHAHI Vinod K. Amphoteric membrane loaded with a noble metal-free hollow spherical NiCoP@rGO bifunctional electrocatalyst for alkaline water electrolyzers[J]. ACS Applied Energy Materials, 2022, 5(7): 8611-8620. |
31 | JI Yuyao, YANG Li, REN Xiang, et al. Full water splitting electrocatalyzed by NiWO4 nanowire array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9555-9559. |
32 | SARMAD Qassam, KHAN Uneeb Masood, BAIG Mutawara Mahmood, et al. Praseodymium-doped Sr2TiFeO6- δ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107609. |
33 | WANG Xixi, SUNARSO Jaka, LU Qian, et al. High-performance platinum-perovskite composite bifunctional oxygen electrocatalyst for rechargeable Zn-air battery[J]. Advanced Energy Materials, 2020, 10(5): 1903271. |
34 | Jincheng HEI, XU Guancheng, WEI Bei, et al. NiFeP nanosheets on N-doped carbon sponge as a hierarchically structured bifunctional electrocatalyst for efficient overall water splitting[J]. Applied Surface Science, 2021, 549: 149297. |
35 | PAN Yuan, SUN Kaian, LIU Shoujie, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. Journal of the American Chemical Society, 2018, 140(7): 2610-2618. |
36 | WANG Jianmei, YANG Wenrong, LIU Jingquan. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting[J]. Journal of Materials Chemistry A, 2016, 4(13): 4686-4690. |
37 | LI Zhida, ZHANG Chunyue, YANG Yang, et al. Molten-salt-induced phosphorus vacancy defect engineering of heterostructured cobalt phosphides for efficient overall water splitting[J]. Inorganic Chemistry Frontiers, 2023, 10(1): 325-334. |
[1] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[2] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[3] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[4] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[5] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[6] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[7] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[8] | WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610. |
[9] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[10] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
[11] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
[12] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[13] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
[14] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[15] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 379
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |