Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2600-2610.DOI: 10.16085/j.issn.1000-6613.2024-0001
• Catalysis and material technology • Previous Articles
WANG Mengyu1,3(), FAN Hongxia1,3, LIANG Changhai2,3, LI Wenying1,3()
Received:
2024-01-02
Revised:
2024-02-28
Online:
2024-06-15
Published:
2024-05-15
Contact:
LI Wenying
汪孟宇1,3(), 范鸿霞1,3, 梁长海2,3, 李文英1,3()
通讯作者:
李文英
作者简介:
汪孟宇(1998—),男,博士研究生,研究方向为工业催化。E-mail:wangmengyu0198@link.tyut.edu.cn。
基金资助:
CLC Number:
WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610.
汪孟宇, 范鸿霞, 梁长海, 李文英. 分子筛中限制效应对其酸性表征及催化性能的影响[J]. 化工进展, 2024, 43(5): 2600-2610.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0001
1 | TIAN Yijun, ZHANG Fangfang, WANG Jieni, et al. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives[J]. Bioresource Technology, 2021, 342: 125977. |
2 | KERSTENS Dorien, SMEYERS Brent, VAN WAEYENBERG Jonathan, et al. State of the art and perspectives of hierarchical zeolites: Practical overview of synthesis methods and use in catalysis[J]. Advanced Materials, 2020, 32(44): e2004690. |
3 | VAN SPEYBROECK Veronique, HEMELSOET Karen, JOOS Lennart, et al. Advances in theory and their application within the field of zeolite chemistry[J]. Chemical Society Reviews, 2015, 44(20): 7044-7111. |
4 | ZHAO Ruixue, HALLER Gary L, LERCHER Johannes A. Alkene adsorption and cracking on acidic zeolites—A gradual process of understanding[J]. Microporous and Mesoporous Materials, 2023, 358: 112390. |
5 | LIU Peng, LIU Qian, LIU Wei, et al. Mechanistic insights into positional and skeletal isomerization of cyclohexene in the H-BEA zeolite[J]. Physical Chemistry Chemical Physics, 2022, 24(30): 18043-18054. |
6 | PARMAR Deependra, Seung Hyeok CHA, HUANG Chenfeng, et al. Impact of medium-pore zeolite topology on para-xylene production from toluene alkylation with methanol[J]. Catalysis Science & Technology, 2023, 13(18): 5227-5236. |
7 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2023, 10(9): nwac217. |
8 | HAN Z, JIA X, SONG X, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
9 | RAVI Manoj, SUSHKEVICH Vitaly L, VAN BOKHOVEN Jeroen A. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nature Materials, 2020, 19: 1047-1056. |
10 | LI Shuo, CAO Jianlin, FENG Xiang, et al. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study[J]. Chinese Journal of Chemical Engineering, 2022, 47: 174-184. |
11 | ALAITHAN Zainab A, Mallia Giuseppe, HARRISON Nicholas M. Monomolecular cracking of propane: Effect of zeolite confinement and acidity[J]. ACS Omega, 2022, 7(9): 7531-7540. |
12 | NIWA Miki, KATADA Naonobu. New method for the temperature- programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review[J]. The Chemical Record, 2013, 13(5): 432-455. |
71 | TIWARI Santosh K, SAHOO Sumanta, WANG Nannan, et al. Graphene research and their outputs: Status and prospect[J]. Journal of Science: Advanced Materials and Devices, 2020, 5(1): 10-29. |
72 | SACHSE Alexander, Javier GARCÍA-MARTÍNEZ. Surfactant-templating of zeolites: From design to application[J]. Chemistry of Materials, 2017, 29(9): 3827-3853. |
13 | BUSCA Guido. Acidity and basicity of zeolites: A fundamental approach[J]. Microporous and Mesoporous Materials, 2017, 254: 3-16. |
14 | TAN Yangchun, HU Wenjing, DU Yanyan, et al. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: A review[J]. Applied Catalysis A: General, 2021, 611: 117916. |
15 | WANG Lei, CHEN Yujing, JIN Shaohua, et al. Selective ring-shift isomerization in hydroconversion of fluorene over supported platinum catalysts[J]. Energy & Fuels, 2016, 30(4): 3403-3412. |
16 | BRITO Larissa, PIRNGRUBER Gerhard D, GUILLON Emmanuelle, et al. Hydroconversion of perhydrophenanthrene over bifunctional Pt/H-USY zeolite catalyst[J]. ChemCatChem, 2020, 12(13): 3477-3488. |
17 | 刘道诚, 王九占, 荆洁颖, 等. 稠环芳烃加氢饱和催化剂研究进展[J]. 化工进展, 2021, 40(2): 835-844. |
LIU Daocheng, WANG Jiuzhan, JING Jieying, et al. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 835-844. | |
18 | SCHMIERMUND Torsten. Acid-base theories[M]// The Chemistry Knowledge for Firefighters. Berlin, Heidelberg: Springer, 2023: 205-215. |
19 | CHIZALLET C, BOUCHY C, LARMIER K, et al. Molecular views on mechanisms of Brønsted acid-catalyzed reactions in zeolites[J]. Chemical Reviews, 2023, 123(9): 6107-6196. |
20 | PALČIĆ A, VALTCHEV V. Analysis and control of acid sites in zeolites [J]. Applied Catalysis A: General, 2020, 606: 117795. |
21 | TANG Xiaomin, LIU Zhiqiang, HUANG Ling, et al. Violation or abidance of löwenstein’s rule in zeolites under synthesis conditions?[J]. ACS Catalysis, 2019, 9(12): 10618-10625. |
22 | CHAI Yuchao, DAI Weili, WU Guangjun, et al. Confinement in a zeolite and zeolite catalysis[J]. Accounts of Chemical Research, 2021, 54(13): 2894-2904. |
23 | DEL CAMPO Pablo, Martínez Cristina, Corma Avelino. Activation and conversion of alkanes in the confined space of zeolite-type materials[J]. Chemical Society Reviews, 2021, 50(15): 8511-8595. |
24 | Fernanda ZALAZAR M, CABRAL Néstor Damián, ROMERO OJEDA Gonzalo D, et al. Confinement effects in protonation reactions catalyzed by zeolites with large void structures[J]. The Journal of Physical Chemistry C, 2018, 122(48): 27350-27359. |
25 | HIMMEL Daniel, RADTKE Valentin, BUTSCHKE Burkhard, et al. Basic remarks on acidity[J]. Angewandte Chemie (International Ed in English), 2018, 57(16): 4386-4411. |
26 | Derouane EG, Védrine JC, Ramos Pinto R, et al. The acidity of zeolites: Concepts, measurements and relation to catalysis: A review on experimental and theoretical methods for the study of zeolite acidity[J]. Catalysis Reviews, 2013, 55(4): 454-515. |
27 | Ferenc LÓNYI, József VALYON. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite[J]. Microporous and Mesoporous Materials, 2001, 47(2/3): 293-301. |
28 | MIAO Peipei, LI Kang, FAN Jiangtao, et al. Efficient ring-opening reaction of tetralin over nanosized ZSM-5 zeolite: Effect of SiO2/Al2O3 ratio and reaction condition[J]. Energy & Fuels, 2019, 33(10): 9480-9490. |
29 | HU Zhongpan, CHEN Lei, CHEN Chong, et al. Fe/ZSM-5 catalysts for ammonia decomposition to CO x -free hydrogen: Effect of SiO2/Al2O3 ratio[J]. Molecular Catalysis, 2018, 455: 14-22. |
30 | BEĆ Krzysztof Bernard, GRABSKA Justyna, HUCK Christian Wolfgang. Physical principles of infrared spectroscopy[M]//Comprehensive Analytical Chemistry. Amsterdam: Elsevier, 2022: 1-43. |
31 | YUAN P, WU D-Q, HE H-P, et al. The hydroxyl species and acid sites on diatomite surface: A combined IR and Raman study[J]. Applied Surface Science, 2004, 227(1/2/3/4): 30-39. |
32 | BORDIGA Silvia, LAMBERTI Carlo, BONINO Francesca, et al. Probing zeolites by vibrational spectroscopies[J]. Chemical Society Reviews, 2015, 44(20): 7262-7341. |
33 | GORTE R J. What do we know about the acidity of solid acids?[J]. Catalysis Letters, 1999, 62(1): 1-13. |
34 | BANERT Klaus, HAGEDORN Manfred, HECK Manuel, et al. Synthesis of trialkylamines with extreme steric hindrance and their decay by a hofmann-like elimination reaction[J]. The Journal of Organic Chemistry, 2020, 85(21): 13630-13643. |
35 | Luís-Ernesto SANDOVAL-DÍAZ, Jhon-Alex GONZÁLEZ-AMAYA, TRUJILLO Carlos-Alexander. General aspects of zeolite acidity characterization[J]. Microporous and Mesoporous Materials, 2015, 215: 229-243. |
36 | RAHMAN M, INFANTES-MOLINA A, HOFFMAN A S, et al. Effect of Si/Al ratio of ZSM-5 support on structure and activity of Mo species in methane dehydroaromatization [J]. Fuel, 2020, 278: 118290. |
37 | ABDELRAHMAN Omar A, VINTER Katherine P, REN Limin, et al. Simple quantification of zeolite acid site density by reactive gas chromatography[J]. Catalysis Science & Technology, 2017, 7(17): 3831-3841. |
38 | 孔维杰, 王焕, 张晓彤, 等. 超稳Y分子筛B酸中心可接近性的研究[J]. 石油炼制与化工, 2020, 51(8): 70-75. |
KONG Weijie, WANG Huan, ZHANG Xiaotong, et al. Accessibility study of Brønsted acid site in USY zeolite[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 70-75. | |
39 | KIM Kyoungsoo, RYOO Ryong, JANG Hee-Dong, et al. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences[J]. Journal of Catalysis, 2012, 288: 115-123. |
40 | KIM Myoung Yeob, LEE Kyungho, CHOI Minkee. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity[J]. Journal of Catalysis, 2014, 319: 232-238. |
41 | LOSCH P, JOSHI H R, VOZNIUK O, et al. Proton mobility, intrinsic acid strength, and acid site location in zeolites revealed by varying temperature infrared spectroscopy and density functional theory studies[J]. Journal of the American Chemical Society, 2018, 140(50): 17790-17799. |
42 | ZHANG X, LI H, DU Y, et al. Elucidating effect of acid strength on isomerization mechanisms of butene over solid acid catalysts in C4 alkylation [J]. Fuel, 2023, 339: 127397. |
43 | PANG Tingting, YANG Xuanyu, YUAN Chenyi, et al. Recent advance in synthesis and application of heteroatom zeolites[J]. Chinese Chemical Letters, 2021, 32(1): 328-338. |
44 | YU W, WU X, CHENG B, et al. Synthesis and applications of SAPO-34 zeolite[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2022, 28(11): e202102787. |
45 | TANDON Hiteshi, CHAKRABORTY Tanmoy, SUHAG Vandana. A scale of atomic electronegativity in terms of atomic nucleophilicity index[J]. Foundations of Chemistry, 2020, 22(2): 335-346. |
46 | LI Li, SHEN Kaixu, HUANG Xin, et al. SAPO-11 with preferential growth along the a-direction as an improved active catalyst in long-alkane isomerization reaction[J]. Microporous and Mesoporous Materials, 2021, 313: 110827. |
47 | 叶蔚甄, 任强, 赵毅, 等. Al原子分布对Y型分子筛酸强度的影响[J]. 石油学报(石油加工), 2021, 37(3): 566-571. |
YE Weizhen, REN Qiang, ZHAO Yi, et al. Effects of Al atom distribution on acid strength of Y zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 566-571. | |
48 | WANG Sen, HE Yue, JIAO Weiyong, et al. Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework[J]. Current Opinion in Chemical Engineering, 2019, 23: 146-154. |
49 | NYSTROM Steven, HOFFMAN Alexander, HIBBITTS David. Tuning Brønsted acid strength by altering site proximity in CHA framework zeolites[J]. ACS Catalysis, 2018, 8(9): 7842-7860. |
50 | BORONAT Mercedes, CORMA Avelino. What is measured when measuring acidity in zeolites with probe molecules?[J]. ACS Catalysis, 2019, 9(2): 1539-1548. |
51 | GRIFONI Emanuele, PICCINI Giovanni Maria, LERCHER Johannes A, et al. Confinement effects and acid strength in zeolites[J]. Nature Communications, 2021, 12: 2630. |
52 | XIAO Yao, CHEN Wei, YI Xianfeng, et al. Confinement-driven “flexible” acidity properties of porous zeolite catalysts with varied probe-assisted solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2021, 125(21): 11580-11590. |
53 | SHAMZHY Mariya, OPANASENKO Maksym, Patricia CONCEPCIÓN, et al. New trends in tailoring active sites in zeolite-based catalysts[J]. Chemical Society Reviews, 2019, 48(4): 1095-1149. |
54 | SMIT Berend, MAESEN Theo L M. Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451: 671-678. |
55 | DEGNAN Thomas F Jr. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003, 216(1/2): 32-46. |
56 | FAN Chi, CHEN Zhen, PANG Lei, et al. The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR[J]. Applied Catalysis A: General, 2018, 550: 256-265. |
57 | 向江南, 刘伟, 刘成连, 等. 低硅铝比ZSM-48分子筛合成及其正构十二烷临氢异构催化性能研究[J]. 燃料化学学报, 2020, 48(1): 83-90. |
XIANG Jiangnan, LIU Wei, LIU Chenglian, et al. Synthesis and hydroisomerization performance of n-C12 over ZSM-48 molecular sieve with low silicon-aluminum ratio[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 83-90. | |
58 | REN Qinghua, RYBICKI Marcin, SAUER Joachim. Interaction of C3—C5 alkenes with zeolitic Brønsted sites: π-complexes, alkoxides, and carbenium ions in H-FER[J]. The Journal of Physical Chemistry C, 2020, 124(18): 10067-10078. |
59 | CHEN Wei, YI Xianfeng, LIU Zhiqiang, et al. Carbocation chemistry confined in zeolites: Spectroscopic and theoretical characterizations[J]. Chemical Society Reviews, 2022, 51(11): 4337-4385. |
60 | LIU Jianwen, YIN Yaru, FU Xianzhu, et al. Stability of C3—C6 carbonium ions inside zeolites: A first principles study[J]. Applied Surface Science, 2020, 503: 144148. |
61 | 付佳, 冯翔, 刘熠斌, 等. Brønsted酸强度对正碳离子转化方向影响的分子模拟[J]. 化工学报, 2018, 69(2): 725-732. |
FU Jia, FENG Xiang, LIU Yibin, et al. Influence of Brønsted acid strength on conversion of carbenium ion by molecular simulation[J]. CIESC Journal, 2018, 69(2): 725-732. | |
62 | XU B, SIEVERS C, HONG S, et al. Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites[J]. Journal of Catalysis, 2006, 244(2): 163-168. |
63 | GOUNDER Rajamani, IGLESIA Enrique. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites[J]. Journal of the American Chemical Society, 2009, 131(5): 1958-1971. |
64 | JONES Andrew J, ZONES Stacey I, IGLESIA Enrique. Implications of transition state confinement within small voids for acid catalysis[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17787-17800. |
65 | HERNANDO Héctor, HERNÁNDEZ-GIMÉNEZ Ana M, Cristina OCHOA-HERNÁNDEZ, et al. Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose[J]. Green Chemistry, 2018, 20(15): 3499-3511. |
66 | LI Ming, ZHANG Yadong, WANG Hao, et al. Influence of zeolite crystal size on selective conversion of n-alkane: Controlling intermediates’ diffusion distances inside the micropores[J]. Fuel, 2019, 254: 115709. |
67 | ZECEVIC Jovana, VANBUTSELE Gina, DE JONG Krijn P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528: 245-248. |
68 | BRITO Larissa, PIRNGRUBER Gerhard D, Javier PEREZ-PELLITERO, et al. Shape selectivity effects in the hydroconversion of perhydrophenanthrene over bifunctional catalysts[J]. Catalysis Science & Technology, 2021, 11(23): 7667-7682. |
69 | GUO Zhongyuan, LI Xin, HU Shen, et al. Understanding the role of internal diffusion barriers in Pt/beta zeolite catalyzed isomerization of n-heptane[J]. Angewandte Chemie (International Ed in English), 2020, 59(4): 1548-1551. |
70 | GUISNET Michel. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218/219: 123-134. |
[1] | WANG Jiarui, LIU Dawei, DENG Yao, XU Jin, MA Xiaoxun, XU Long. Research progress of oxygen carriers in chemical looping reforming reaction of methane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253. |
[2] | ZHANG Guoqing, SONG Shubo, WANG Xingrui, GONG Miaomiao, WANG Xu, XU Yuhong, FENG Jiyue, ZHANG Fuyang, CHEN Huiyong. Recent advances in the synthesis and application of zeolites from coal-based solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2311-2323. |
[3] | DENG Yao, ZHAO Qingpeng, XU Jin, LIU Dawei, MA Xiaoxun, XU Long. Methane chemical looping reforming over cordierite-loaded Fe/Ce oxygen carriers prepared by ball milling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2396-2408. |
[4] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[5] | CHEN Keyu, XU Jinxin, WU Guibo, YANG Zhe, CHEN Jiahong, CHEN Yongli. Current situation and development prospect of green ammonia industry [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. |
[6] | XUE Yunjiao, ZHANG Xuan, LIU Yang, CHEN Yuhuan, FANG Jing, YANG Fang. Pseudo-protein biomaterials: Classification, synthesis and application [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2001-2016. |
[7] | WANG Xudong, LIU Dunyu, XU Kailong, LIU Qiuqi, FAN Yunpei, JIN Jing. Impacts of CeO2 oxygen carriers on the conversion of mercury in chemical looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2191-2200. |
[8] | ZHANG Pengfei, CHEN Weipeng, XIAO Zhuonan, LYU Qinggang, ZHANG Shunfeng, ZHANG Zifeng. Red brick doping modified Baiyun Obo iron ore concentrate oxygen carrier performance [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2226-2234. |
[9] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[10] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[11] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[12] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[13] | LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292. |
[14] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[15] | WANG Bicong, PAN Dawei, XIE Rui, JU Xiaojie, LIU Zhuang, WANG Wei, CHU Liangyin. Fabrication of multi-enzyme@ZIF-8 for extraction of anthocyanins from black rice [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1403-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |