Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2311-2323.DOI: 10.16085/j.issn.1000-6613.2023-2107
• Clean and efficient utilization of fossil energy • Previous Articles
ZHANG Guoqing(), SONG Shubo, WANG Xingrui, GONG Miaomiao, WANG Xu, XU Yuhong, FENG Jiyue, ZHANG Fuyang, CHEN Huiyong()
Received:
2023-11-30
Revised:
2024-02-22
Online:
2024-06-15
Published:
2024-05-15
Contact:
CHEN Huiyong
张国卿(), 宋舒波, 王兴瑞, 巩苗苗, 王旭, 许宇鸿, 冯继越, 张福扬, 陈汇勇()
通讯作者:
陈汇勇
作者简介:
张国卿(1999—),男,硕士研究生,研究方向为煤基固废高值转化。E-mail:202133018@nwu.edu.cn。
基金资助:
CLC Number:
ZHANG Guoqing, SONG Shubo, WANG Xingrui, GONG Miaomiao, WANG Xu, XU Yuhong, FENG Jiyue, ZHANG Fuyang, CHEN Huiyong. Recent advances in the synthesis and application of zeolites from coal-based solid wastes[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2311-2323.
张国卿, 宋舒波, 王兴瑞, 巩苗苗, 王旭, 许宇鸿, 冯继越, 张福扬, 陈汇勇. 煤固废基分子筛的制备及其应用进展[J]. 化工进展, 2024, 43(5): 2311-2323.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2107
处理利用方式 | 特点 |
---|---|
摊铺、堆填 | 大批量处理;就地处理;无附加值 |
制备建筑材料 | 大批量处理;建筑材料质量较差;低附加值 |
提取有价元素 | 充分利用各类元素;工艺复杂;分离困难 |
制备土壤添加剂 | 大批量处理;需控制重金属污染 |
制备分子筛 | 处理量有限;元素利用合理;高附加值 |
处理利用方式 | 特点 |
---|---|
摊铺、堆填 | 大批量处理;就地处理;无附加值 |
制备建筑材料 | 大批量处理;建筑材料质量较差;低附加值 |
提取有价元素 | 充分利用各类元素;工艺复杂;分离困难 |
制备土壤添加剂 | 大批量处理;需控制重金属污染 |
制备分子筛 | 处理量有限;元素利用合理;高附加值 |
主要类别 | 所属行业 | 特点 | 元素组成(质量分数)/% | 矿物组成 |
---|---|---|---|---|
煤矸石 | 采煤、洗选 | 块体;伴生矿物;元素组成复杂; 含碳量高 | SiO2(30~65)、Al2O3(15~40)、Fe2O3(1~10)、CaO(1~3)、TiO2(0.5~3.0) | 石英、高岭石、蒙脱石、白云石 |
粉煤灰 | 热电 | 粉体;热加工产物;氧化物形态; | SiO2(33~60)、Al2O3(17~35)、Fe2O3(1.5~15)、CaO(1~5)、MgO(0.5~2.2) | 莫来石、石英 |
煤气化渣 | 煤化工 | 颗粒;硬度高;玻璃态;高温热 处理产物 | SiO2(30~60)、Al2O3(15~30)、Fe2O3(2~15)、CaO(1~13)、NaO(0.5~3.0) | 石英、方解石、莫来石 |
煤液化渣 | 煤化工 | 颗粒;掺混残余催化剂;组成复杂 | SiO2(5~50)、Al2O3(5~20)、Fe2O3(10~65)、CaO(5~20)、TiO2(1~3) | 钙长石、石英 |
主要类别 | 所属行业 | 特点 | 元素组成(质量分数)/% | 矿物组成 |
---|---|---|---|---|
煤矸石 | 采煤、洗选 | 块体;伴生矿物;元素组成复杂; 含碳量高 | SiO2(30~65)、Al2O3(15~40)、Fe2O3(1~10)、CaO(1~3)、TiO2(0.5~3.0) | 石英、高岭石、蒙脱石、白云石 |
粉煤灰 | 热电 | 粉体;热加工产物;氧化物形态; | SiO2(33~60)、Al2O3(17~35)、Fe2O3(1.5~15)、CaO(1~5)、MgO(0.5~2.2) | 莫来石、石英 |
煤气化渣 | 煤化工 | 颗粒;硬度高;玻璃态;高温热 处理产物 | SiO2(30~60)、Al2O3(15~30)、Fe2O3(2~15)、CaO(1~13)、NaO(0.5~3.0) | 石英、方解石、莫来石 |
煤液化渣 | 煤化工 | 颗粒;掺混残余催化剂;组成复杂 | SiO2(5~50)、Al2O3(5~20)、Fe2O3(10~65)、CaO(5~20)、TiO2(1~3) | 钙长石、石英 |
分子筛名称 | 骨架类型 | 固废原料种类 | 活化方法 | 合成方法 | 参考文献 |
---|---|---|---|---|---|
4A | LTA | 粉煤灰 | — | 水热合成 | [ |
NaA | LTA | 煤矸石 | 热活化 | 水热合成 | [ |
4A | LTA | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite A | LTA | 粉煤灰 | — | 微波辅助合成 | [ |
SCD-Y | FAU | 煤矸石 | 热活化 | 水热合成 | [ |
NaY | FAU | 煤矸石 | 碱熔活化 | 水热合成 | [ |
Zeolite X | FAU | 粉煤灰 | 碱熔活化 | 水热合成 | [ |
FAU | FAU | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
NaX | FAU | 粉煤灰 | 碱熔活化 | 超声辅助合成 | [ |
NaP1 | GIS | 粉煤灰 | — | 水热合成 | [ |
NaP | GIS | 煤气化渣 | — | 水热合成 | [ |
P-zeolite | GIS | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite P1 | GIS | 粉煤灰 | 热活化 | 无溶剂合成 | [ |
Analcime | ANA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 超声辅助合成 | [ |
ZSM-5 | MFI | 煤矸石 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 煤气化渣 | — | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 热活化 | 超声辅助合成 | [ |
Cancrinite-type zeolite | CAN | 粉煤灰 | — | 无溶剂合成 | [ |
分子筛名称 | 骨架类型 | 固废原料种类 | 活化方法 | 合成方法 | 参考文献 |
---|---|---|---|---|---|
4A | LTA | 粉煤灰 | — | 水热合成 | [ |
NaA | LTA | 煤矸石 | 热活化 | 水热合成 | [ |
4A | LTA | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite A | LTA | 粉煤灰 | — | 微波辅助合成 | [ |
SCD-Y | FAU | 煤矸石 | 热活化 | 水热合成 | [ |
NaY | FAU | 煤矸石 | 碱熔活化 | 水热合成 | [ |
Zeolite X | FAU | 粉煤灰 | 碱熔活化 | 水热合成 | [ |
FAU | FAU | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
NaX | FAU | 粉煤灰 | 碱熔活化 | 超声辅助合成 | [ |
NaP1 | GIS | 粉煤灰 | — | 水热合成 | [ |
NaP | GIS | 煤气化渣 | — | 水热合成 | [ |
P-zeolite | GIS | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite P1 | GIS | 粉煤灰 | 热活化 | 无溶剂合成 | [ |
Analcime | ANA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 超声辅助合成 | [ |
ZSM-5 | MFI | 煤矸石 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 煤气化渣 | — | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 热活化 | 超声辅助合成 | [ |
Cancrinite-type zeolite | CAN | 粉煤灰 | — | 无溶剂合成 | [ |
1 | 张玥, 丁会敏, 杨光, 等. 煤基固体废弃物制备分子筛的研究进展[J]. 化学与粘合, 2023, 45(2): 174-177. |
ZHANG Yue, DING Huimin, YANG Guang, et al. Research progress in preparation of molecular sieves from coal-based solid waste[J]. Chemistry and Adhesion, 2023, 45(2): 174-177. | |
2 | 张玥, 丁会敏, 唐诗洋, 等. 煤基固废合成A型和X类型分子筛的调控研究[J]. 化学与粘合, 2023, 45(4): 326-329, 342. |
ZHANG Yue, DING Huimin, TANG Shiyang, et al. Study on the regulation of synthesis of type A and type X zeolites from coal-based solid waste [J]. Chemistry and Adhesion, 2023, 45(4): 326-329, 342. | |
3 | 李启辉. 煤矸石的性质及综合利用研究进展[J]. 应用化工, 2023, 52(5): 1576-1581. |
LI Qihui. Research progress on properties and comprehensive utilization of coal gangue[J]. Applied Chemical Industry, 2023, 52(5): 1576-1581. | |
4 | 康超, 乔金鹏, 杨胜超, 等. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 47(7): 2783-2799. |
KANG Chao, QIAO Jinpeng, YANG Shengchao, et al. Research progress on activation extraction of valuable metals in coal gangue[J]. CIESC Journal, 2023, 47(7): 2783-2799. | |
5 | YANG Zili, CHANG Guohui, XIA Yangchao, et al. Utilization of waste cooking oil for highly efficient recovery of unburned carbon from coal fly ash[J]. Journal of Cleaner Production, 2021, 282: 124547. |
6 | 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5. |
ZHANG Xiangcheng, MENG Yongbiao. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5. | |
7 | 刘艳丽, 李强, 陈占飞, 等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术, 2022,50(11):251-257. |
LIU Yanli, LI Qiang, CHEN Zhanfei, et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology, 2022, 50(11):251-257. | |
8 | 李强, 高丽丽, 艾锋, 等. 碳达峰碳中和约束下北方能源型城市低碳发展路径[J]. 能源与节能, 2023(5): 6-10, 19. |
LI Qiang, GAO Lili, AI Feng, et al. Low-carbon development path of energy-oriented cities in Northern China under constraint of carbon peaking and carbon neutrality[J]. Energy and Energy Conservation, 2023(5): 6-10, 19. | |
9 | 李朋辉, 任辉. 煤矸石精细化利用的研究[J]. 广州化工, 2021, 49(10): 27-29. |
LI Penghui, REN Hui. Study on fine utilization of coal gangue[J]. Guangzhou Chemical Industry, 2021, 49(10): 27-29. | |
10 | STRACHER Glenn B, TAYLOR Tammy P. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1/2): 7-17. |
11 | OZDENIZ A H, CORUMLUOGLU O, KALAYCI I. The relationship between the natural compaction and the spontaneous combustion of industrial-scale coal stockpiles[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 33(2): 121-129. |
12 | 实华. 十部门联合印发《关于“十四五”大宗固体废弃物综合利用的指导意见》[J]. 中国石油和化工, 2021(04): 77. |
SHI Hua. Ten departments jointly issued the “guiding opinions on the comprehensive utilization of bulk solid wastes in the 14th Five-Year Plan”[J]. China Petroleum and Chemical Industry, 2021(04): 77. | |
13 | 崔悦, 徐鹤, 吴婧. 大宗工业固体废物综合利用产业发展模式更迭与创新研析[J]. 环境保护, 2022, 50(20): 31-36. |
CUI Yue, XU He, WU Jing. Study on the change and innovation of development models of bulky industrial solid waste comprehensive utilization industry[J]. Environmental Protection, 2022, 50(20): 31-36. | |
14 | LU Xuhang, LIU Bo, ZHANG Qian, et al. Recycling of coal fly ash in building materials: A review[J]. Minerals, 2022, 13(1): 25. |
15 | ZHANG Tong, WEN Qianxin, GAO Shan, et al. Comparative study on mechanical and environmental properties of coal gangue sand concrete[J]. Construction and Building Materials, 2023, 400: 132646. |
16 | JU Tongyao, HAN Siyu, MENG Yuan, et al. High-end reclamation of coal fly ash focusing on elemental extraction and synthesis of porous materials[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(20): 6894-6911. |
17 | ZHAO Gaowen, WU Tao, REN Guanzhou, et al. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil[J]. Journal of Cleaner Production, 2023, 404: 136993. |
18 | LI Jiayan, WANG Jinman. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. |
19 | YANG Chenguang, YIN Jianqiang, WU Liqin, et al. Research on the identification mechanism of coal gangue based on the differences of mineral components[J]. ACS Omega, 2022, 8(1): 48-55. |
20 | LI Qi, Liang LYU, ZHAO Xudong, et al. Cost-effective microwave-assisted hydrothermal rapid synthesis of analcime-activated carbon composite from coal gangue used for Pb2+ adsorption[J]. Environmental Science and Pollution Research, 2022, 29(51): 77788-77799. |
21 | BELVISO Claudia. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues[J]. Progress in Energy and Combustion Science, 2018, 65: 109-135. |
22 | MURUKUTTI Mahima Kumar, JENA Hrudananda. Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127085. |
23 | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. | |
24 | 崔倩, 王岸楠, 陈再明, 等. 液化残渣基CO2吸附剂的制备与性能优化[J]. 化工进展, 2023, 42(12): 6620-6630. |
CUI Qian, WANG Annan, CHEN Zaiming, et al. Preparation and performance optimization of liquefied residue-based CO2 adsorbents[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6620-6630. | |
25 | YAN Shiying, XUAN Weiwei, CAO Chunyan, et al. A review of sustainable utilization and prospect of coal gasification slag[J]. Environmental Research, 2023, 238(Pt 2): 117186. |
26 | QIAN Tingting, LI Jinhong. Synthesis of Na-A zeolite from coal gangue with the in situ crystallization technique[J]. Advanced Powder Technology, 2015, 26(1): 98-104. |
27 | GE Qilong, TIAN Qi, WANG Sufang, et al. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil[J]. Chinese Journal of Chemical Engineering, 2022, 46: 150-160. |
28 | ZHANG Miaosen, WANG Xiaoli. Preparation of a gangue-based X-type zeolite molecular sieve as a multiphase Fenton catalyst and its catalytic performance[J]. ACS Omega, 2021, 6(28): 18414-18425. |
29 | CHANDRASEKHAR S. Influence of metakaolinization temperature on the formation of zeolite 4A from Kaolin[J]. Clay Minerals, 1996, 31(2): 253-261. |
30 | LI Haipeng, CHENG Rongqing, LIU Zhiliang, et al. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue[J]. Science of The Total Environment, 2019, 683: 638-647. |
31 | LIU Yi, YAN Chunjie, ZHAO Junjie, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11-22. |
32 | LI Hui, ZHENG Feng, WANG Jing, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390: 124513. |
33 | 郑涛, 刘海燕, 张睿, 等. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
ZHENG Tao, LIU Haiyan, ZHANG Rui, et al. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve[J]. CIESC Journal, 2022, 73(6): 2334-2351. | |
34 | BU Naijing, LIU Xiaomeng, SONG Shaolei, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31(7): 2699-2710. |
35 | YANG Liyun, QIAN Xiaoming, YUAN Peng, et al. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3 [J]. Journal of Cleaner Production, 2019, 212: 250-260. |
36 | GE Qilong, MOEEN Muhammad, TIAN Qi, et al. Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue[J]. Environmental Science and Pollution Research, 2020, 27(7): 7398-7408. |
37 | SHU Rui, BAI Jiaming, GUO Feiqiang, et al. Synthesis of carbon/P-zeolite composites from coal gasification fine slag and studies on adsorption characteristics for methylene blue[J]. Korean Journal of Chemical Engineering, 2023, 40(7): 1639-1649. |
38 | 赵鹏德, 吉文欣, 张世越, 等. 宁东煤气化细渣固相碱熔制备单一相A型沸石[J]. 石油学报(石油加工), 2020, 36(5): 1031-1038. |
ZHAO Pengde, JI Wenxin, ZHANG Shiyue, et al. Preparation of single phase zeolite A by solid phase alkali fusion synthesis of fine slag from ningdong coal gasification[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1031-1038. | |
39 | JIN Yuxuan, LIU Ze, HAN Le, et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127027. |
40 | HAN Jinfeng, JIN Xiaotong, SONG Chunfeng, et al. Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue[J]. Green Chemistry, 2020, 22(1): 219-229. |
41 | TAUANOV Zhandos, SHAH Dhawal, INGLEZAKIS Vassilis, et al. Hydrothermal synthesis of zeolite production from coal fly ash: A heuristic approach and its optimization for system identification of conversion[J]. Journal of Cleaner Production, 2018, 182: 616-623. |
42 | IQBAL Asifa, SATTAR Hamed, HAIDER Rizwan, et al. Synthesis and characterization of pure phase zeolite 4A from coal fly ash[J]. Journal of Cleaner Production, 2019, 219: 258-267. |
43 | JI Wenxin, ZHANG Shiyue, ZHAO Pengde, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694. |
44 | JIN Yuxuan, LI Li, LIU Ze, et al. Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method[J]. Advanced Powder Technology, 2021, 32(3): 791-801. |
45 | WANG Ruoyu, SONG Ye, YANG Xue, et al. Self-combustion-depolymerization approach to activate solid-waste coal gangue minerals for fluid catalytic cracking catalyst synthesis[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(34): 11376-11386. |
46 | ZHENG Yunsheng, ZHOU Junxia, MA Zhijun, et al. Preparation of a high-silicon ZSM-5 molecular sieve using only coal gangue as the silicon and aluminum sources[J]. Materials, 2023, 16(12): 4338. |
47 | 徐啟斌, 牛香力, 陈婷婷, 等. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
XU Qibin, NIU Xiangli, CHEN Tingting, et al. Preparation of 4A molecular sieve from coal gasification slag and its adsorption performance[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2251-2261. | |
48 | HAN Lina, REN Weiguo, WANG Bing, et al. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water[J]. Fuel, 2019, 253: 1184-1192. |
49 | ZHOU Jianmin, ZHENG Feng, LI Hui, et al. Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance[J]. Chemical Engineering Journal, 2020, 381: 122698. |
50 | WANG Lixiang, LIU Xuelu, ZHANG Rui, et al. Synthesis of zeolite-based Cu/Fe-X from coal gangue for fenton-like catalytic degradation of rhodamine B[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2024, 34: 722-734. |
51 | DE GREGORI DA ROCHA Juliana, DE ANDRADE Cristiano José, RIELLA Humberto Gracher, et al. Hierarchical zeolite from coal fly ash using the biosurfactant manosyleritritol lipids-B as a novel green mesoporogen agent[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109753. |
52 | LI Hui, LI Mingjun, ZHENG Feng, et al. Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo[J]. Journal of Cleaner Production, 2021, 325: 129322. |
53 | YAN Kezhou, ZHANG Jiyuan, LIU Dandan, et al. Feasible synthesis of magnetic zeolite from red mud and coal gangue: Preparation, transformation and application[J]. Powder Technology, 2023, 423: 118495. |
54 | CHAI Zhen, Peng LYU, BAI Yonghui, et al. Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: Fabrication, characterization, equilibrium, and kinetic studies[J]. RSC Advances, 2022, 12(11): 6715-6724. |
55 | SHU Rui, QIAO Qixia, GUO Feiqiang, et al. Controlled design of Na-P1 zeolite/porous carbon composites from coal gasification fine slag for high-performance adsorbent[J]. Environmental Research, 2023, 217: 114912. |
56 | WU Yuhua, MA Yulong, SUN Yonggang, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186. |
57 | MA Xianyao, LI Yingxue, XU Defu, et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management, 2022, 305: 114404. |
58 | MENG Xiangju, XIAO Fengshou. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
59 | GAO Jida, LIN Qianji, YANG Tingzhi, et al. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue[J]. Chemosphere, 2023, 341: 139741. |
60 | 陈汇勇, 张国卿, 王旭, 等. 一种煤矸石温和、绿色制备分子筛的方法:CN116947067A[P]. 2023-10-27. |
CHEN Huiyong, ZHANG Guoqing, WANG Xu, et al. A mild and green method for preparing zeolite from coal gangue:CN116947067A[P]. 2023-10-27. | |
61 | TENG Liumei, JIN Xi, BU Yifan, et al. Facile and fast synthesis of cancrinite-type zeolite from coal fly ash by a novel hot stuffy route[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108369. |
62 | LIU Pei, WU Qinming, YAN Keping, et al. Solvent-free synthesis of FAU zeolite from coal fly ash[J]. Dalton Transactions, 2023, 52(1): 24-28. |
63 | WU Yifan, LIANG Guangbing, ZHAO Xinna, et al. Flexible textural design of ZSM-5 zeolite adsorbent from coal fly ash via solvent-free method for toluene elimination[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109589. |
64 | LIU Lijuan, JI Wenxin, LI Kangning, et al. Solid phase ZSM-5 synthesis from coal gasification coarse slag[J]. Silicon, 2022, 14(14): 8855-8868. |
65 | HAN Jinfeng, Ying HA, GUO Mingyu, et al. Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method[J]. Ultrasonics Sonochemistry, 2019, 59: 104703. |
66 | MAKGABUTLANE Boitumelo, NTHUNYA Lebea N, NXUMALO Edward N, et al. Microwave irradiation-assisted synthesis of zeolites from coal fly ash: An optimization study for a sustainable and efficient production process[J]. ACS Omega, 2020, 5(39): 25000-25008. |
67 | HOSSINI ASL Seyed Mostafa, MASOMI Mojtaba, TAJBAKHSH Mahmood. Hybrid adaptive neuro-fuzzy inference systems for forecasting benzene, toluene & m-xylene removal from aqueous solutions by HZSM-5 nano-zeolite synthesized from coal fly ash[J]. Journal of Cleaner Production, 2020, 258: 120688. |
68 | BOYCHEVA Silviya, ZGUREVA Denitza, LAZAROVA Hristina, et al. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X[J]. Chemosphere, 2021, 271: 129505. |
69 | SHU Qingxiang, SUN Zhenhua, ZHU Ganyu, et al. Highly efficient synthesis of ZSM-5 zeolite by one-step microwave using desilication solution of coal gasification coarse slag and its application to VOCs adsorption[J]. Process Safety and Environmental Protection, 2022, 167: 173-183. |
70 | LIU Yixuan, ZHOU Tengteng, CHEN Xingxing, et al. Synthesis of a coal fly ash-based NaP zeolite using the microwave-ultrasonic assisted method: Preparation, growth mechanism, and kinetics[J]. ChemistrySelect, 2023, 8(1): e202204353. |
71 | JOSEPH Ifeoma V, TOSHEVA Lubomira, DOYLE Aidan M. Simultaneous removal of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103895. |
72 | FENG Wei, WAN Zhijian, DANIELS Jacqueline, et al. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications[J]. Journal of Cleaner Production, 2018, 202: 390-400. |
73 | SIVALINGAM Sivamani, KELLA Tatinaidu, MAHARANA Manisha, et al. Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: Process optimization, isotherm and kinetic studies[J]. Journal of Cleaner Production, 2018, 208(C): 1241-1254. |
74 | Bo LYU, DONG Bobing, ZHANG Chuanxiang, et al. Effective adsorption of methylene blue from aqueous solution by coal gangue-based zeolite granules in a fluidized bed: Fluidization characteristics and continuous adsorption[J]. Powder Technology, 2022, 408: 117764. |
75 | YUAN Ning, TAN Kaiqi, ZHANG Xinling, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303(Pt 1): 134839. |
76 | QIAO Qixia, ZHOU Huiming, GUO Feiqiang, et al. Facile and scalable synthesis of mesoporous composite materials from coal gasification fine slag for enhanced adsorption of malachite green[J]. Journal of Cleaner Production, 2022, 379: 134739. |
77 | CHEN Jiabin, YANG Renjie, ZHANG Zhiyong, et al. Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash[J]. Journal of Hazardous Materials, 2022, 421: 126817. |
78 | QUAN Cui, CHU Hua, ZHOU Yingying, et al. Amine-modified silica zeolite from coal gangue for CO2 capture[J]. Fuel, 2022, 322: 124184. |
79 | VERRECCHIA Gabriele, CAFIERO Lorenzo, DE CAPRARIIS Benedetta, et al. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption[J]. Fuel, 2020, 276: 118041. |
80 | LI Haipeng, WANG Le, LIU Zhiliang, et al. Cu, Ag-containing systems based on coal gangue as catalysts for highly efficient antibiotics removal via persulfate activation under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105016. |
81 | BOYCHEVA Silviya, ZGUREVA Denitza, Miroslava VÁCLAVÍKOVÁ, et al. Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation[J]. Journal of Hazardous Materials, 2019, 361: 374-382. |
82 | COCCHI Marco, CAFIERO Lorenzo, DE ANGELIS Doina, et al. Conversion of marine plastic litter into chemicals and fuels through catalytic pyrolysis using commercial and coal fly ash-synthesized zeolites[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3644-3656. |
83 | XU Liya, DONG Kaiming, GUO Feiqiang, et al. Synthesis of zeolite-based porous catalysts from coal gasification fine slag for steam reforming of toluene[J]. Energy, 2023, 274: 127294. |
84 | WU Ruofei, Peng LYU, WANG Jiaofei, et al. Catalytic upgrading of cow manure pyrolysis vapors over zeolite/carbon composites prepared from coal gasification fine slag: High quality bio-oil obtaining and mechanism investigation[J]. Fuel, 2023, 339: 126941. |
85 | GE Qilong, TIAN Qi, HOU Rui, et al. Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil[J]. Chemosphere, 2022, 291(Pt 2): 132835. |
86 | FAN Yifei, HUANG Renhe, LIU Qingyun, et al. Synthesis of zeolite A from fly ash and its application in the slow release of urea[J]. Waste Management, 2023, 158: 47-55. |
[1] | LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292. |
[2] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[3] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
[4] | ZHANG Haipeng, WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan, FAN Binbin, ZHENG Jiajun, LI Ruifeng. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. |
[5] | ZHOU Mei, ZENG Haojie, LU Junning, PU Ting, LIU Baoyu. Progress in the synthesis of hierarchical zeolites for diffusion intensification [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 76-86. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[9] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[10] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[11] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[12] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[13] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[14] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[15] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |