1 |
SUN Zhenkun, LU Dennis Y, SYMONDS Robert T, et al. Chemical looping reforming of CH4 in the presence of CO2 using ilmenite ore and NiO-modified ilmenite ore oxygen carriers[J]. Chemical Engineering Journal, 2020, 401: 123481.
|
2 |
SHAH Vedant, CHENG Zhuo, BASER Deven S, et al. Highly selective production of syngas from chemical looping reforming of methane with CO2 utilization on MgO-supported calcium ferrite redox materials[J]. Applied Energy, 2021, 282: 116111.
|
3 |
苏小平, 王力, 杨武, 等. 甲烷化学链重整制合成气的研究进展[J]. 地下水, 2017, 39(4): 198-202.
|
|
SU Xiaoping, WANG Li, YANG Wu, et al. Research progress of methane chemical chain reforming to synthesis gas[J]. Ground Water, 2017, 39(4): 198-202.
|
4 |
HE Jiameng, YANG Qian, SONG Zhengping, et al. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: A review[J]. Fuel, 2023, 351: 128864.
|
5 |
吴兴亮, 吕凌辉, 马清祥, 等. 甲烷二氧化碳重整镍基催化剂的研究进展[J]. 洁净煤技术, 2021, 27(3): 129-137.
|
|
WU Xingliang, Linghui LYU, MA Qingxiang, et al. Research progress of nickel-based catalysts for carbon dioxide reforming of methane[J]. Clean Coal Technology, 2021, 27(3): 129-137.
|
6 |
LI Danyang, XU Ruidong, GU Zhenhua, et al. Chemical-looping conversion of methane: A review[J]. Energy Technology, 2020, 8(8): 1900925.
|
7 |
胡弼文, 刘庆, 蔡雨阳, 等. 非常规天然气相关理论技术及前景[C] // 第33届全国天然气学术年会, 南宁, 2023: 778-787.
|
|
Hu B, Liu Q, Cai Y, et al. Theory, technology and prospect of unconventional natural gas [C] // The 33rd National Natural Gas Academic Annual Conference, Nanning, 2023: 778-787.
|
8 |
LI Di, ROHANI Vandad, FABRY Frédéric, et al. Direct conversion of CO2 and CH4 into liquid chemicals by plasma-catalysis[J]. Applied Catalysis B: Environmental, 2020, 261: 118228.
|
9 |
ZHU Zengzan, GUO Wenyi, ZHANG Ying, et al. Research progress on methane conversion coupling photocatalysis and thermocatalysis[J]. Carbon Energy, 2021, 3(4): 519-540.
|
10 |
SASTRE Daniel, SERRANO David P, PIZARRO Patricia, et al. Chemical insights on the activity of La1- x Sr x FeO3 perovskites for chemical looping reforming of methane coupled with CO2-splitting[J]. Journal of CO2 Utilization, 2019, 31: 16-26.
|
11 |
ABDULLAH Bawadi, GHANI Nur Azeanni ABD, Dai-Viet N VO. Recent advances in dry reforming of methane over Ni-based catalysts[J]. Journal of Cleaner Production, 2017, 162: 170-185.
|
12 |
LIU Changjun, YE Jingyun, JIANG Jiaojun, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3): 529-541.
|
13 |
HUA Xiuning, WANG Wei. Chemical looping combustion: A new low-dioxin energy conversion technology[J]. Journal of Environmental Sciences (China), 2015, 32: 135-145.
|
14 |
Sanaz DANESHMAND-JAHROMI, SEDGHKERDAR Mohammad Hashem, MAHINPEY Nader. A review of chemical looping combustion technology: Fundamentals, and development of natural, industrial waste, and synthetic oxygen carriers[J]. Fuel, 2023, 341: 127626.
|
15 |
JACOBSON Mark Z. Review of solutions to global warming, air pollution, and energy security[J]. Energy & Environmental Science, 2009, 2(2): 148-173.
|
16 |
CEBRUCEAN Dumitru, CEBRUCEAN Viorica, IONEL Ioana. CO2 capture and storage from fossil fuel power plants[J]. Energy Procedia, 2014, 63: 18-26.
|
17 |
BUELENS Lukas C, GALVITA Vladimir V, POELMAN Hilde, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle[J]. Science, 2016, 354(6311): 449-452.
|
18 |
ZHU Lin, HE Yangdong, LI Luling, et al. Tech-economic assessment of second-generation CCS: Chemical looping combustion[J]. Energy, 2018, 144: 915-927.
|
19 |
ADANEZ Juan, ABAD Alberto, Francisco GARCIA-LABIANO, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282.
|
20 |
HU Jiawei, GALVITA Vladimir, POELMAN Hilde, et al. Advanced chemical looping materials for CO2 utilization: A review[J]. Materials, 2018, 11(7): 1187.
|
21 |
BHAVSAR Saurabh, NAJERA Michelle, SOLUNKE Rahul, et al. Chemical looping: To combustion and beyond[J]. Catalysis Today, 2014, 228: 96-105.
|
22 |
DENG Guixian, LI Kongzhai, ZHANG Guifang, et al. Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane[J]. Applied Energy, 2019, 253: 113534.
|
23 |
SIRIWARDANE Ranjani, TIAN Hanjing, SIMONYI Thomas, et al. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion[J]. Fuel, 2013, 108: 319-333.
|
24 |
GALVITA Vladimir V, POELMAN Hilde, DETAVERNIER Christophe, et al. Catalyst-assisted chemical looping for CO2 conversion to CO[J]. Applied Catalysis B: Environmental, 2015, 164: 184-191.
|
25 |
MOGHTADERI Behdad. Review of the recent chemical looping process developments for novel energy and fuel applications[J]. Energy & Fuels, 2012, 26(1): 15-40.
|
26 |
PLOU J, DURÁN P, HERGUIDO J, et al. Purified hydrogen from synthetic biogas by joint methane dry reforming and steam-iron process: Behaviour of metallic oxides and coke formation[J]. Fuel, 2014, 118: 100-106.
|
27 |
ZHU Xing, LI Kongzhai, WEI Yonggang, et al. Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier: Evolution of its structure and reducibility[J]. Energy & Fuels, 2014, 28(2): 754-760.
|
28 |
HOLLADAY J D, HU J, KING D L, et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009, 139(4): 244-260.
|
29 |
GALVITA Vladimir, SUNDMACHER Kai. Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor[J]. Applied Catalysis A: General, 2005, 289(2): 121-127.
|
30 |
HE Fang, WEI Yonggang, LI Haibin, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102.
|
31 |
LI Danyang, LI Kongzhai, XU Ruidong, et al. Enhanced CH4 and CO oxidation over Ce1– x Fe x O2– δ hybrid catalysts by tuning the lattice distortion and the state of surface iron species[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19227-19241.
|
32 |
DE VOS Yoran, JACOBS Marijke, VAN DER VOORT Pascal, et al. Development of stable oxygen carrier materials for chemical looping processes—A review[J]. Catalysts, 2020, 10(8): 926.
|
33 |
WENZEL Marcus, DHARANIPRAGADA NVR Aditya, GALVITA Vladimir V, et al. CO production from CO2 via reverse water-gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide[J]. Journal of CO2 Utilization, 2016, 17: 60-68.
|
34 |
SONG Tao, SHEN Laihong. Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110.
|
35 |
HOSSAIN Mohammad M, DE LASA Hugo I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review[J]. Chemical Engineering Science, 2008, 63(18): 4433-4451.
|
36 |
FAN Liang-Shih, ZENG Liang, WANG William, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—Prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280.
|
37 |
ZHOU Zhihao, SUN Zhenkun, DUAN L. Chemical looping: A flexible platform technology for CH4 conversion coupled with CO2 utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 39: 100721.
|
38 |
HU Jiawei, GALVITA V, POELMAN H, et al. Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping[J]. Applied Catalysis B: Environmental, 2019, 247: 86-99.
|
39 |
HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. Calcium promoted Fe/Al2O3 oxygen carrier for hydrogen production via cyclic chemical looping steam methane reforming process[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16159-16168.
|
40 |
HUANG Weichen, KUO Yulin, SU Yuming, et al. A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process[J]. Chemical Engineering Journal, 2017, 316: 15-23.
|
41 |
YIN Xianglei, WANG Shen, SUN Rong, et al. A Ce-Fe oxygen carrier with a core-shell structure for chemical looping steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2020, 59: 9775-9786.
|
42 |
Zhou Z, Li L, Liu X, et al. Accelerated syngas generation from chemical looping CH4 reforming by using reduced ilmenite ore as catalyst[J]. Fuel Processing Technology, 2022, 232: 107270.
|
43 |
HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier[J]. Applied Energy, 2016, 165: 685-694.
|
44 |
YUAN Kai, WANG Yuhao, LI Kongzhai, et al. LaFe0.8Co0.15Cu0.05O3 supported on silicalite-1 as a durable oxygen carrier for chemical looping reforming of CH4 coupled with CO2 reduction[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39004-39013.
|
45 |
ZHU Yanyan, SUN Xueyan, Liu Weiwei, et al. Microstructure and reactivity evolution of LaFeAl oxygen carrier for syngas production via chemical looping CH4/CO2 reforming[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30509-30524.
|
46 |
ZHAO Xiao, ZHOU Hui, SIKARWAR Vineet Singh, et al. Biomass-based chemical looping technologies: The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885-1910.
|
47 |
AHMAD SALAM Farooqi, MOHAMMAD Yusuf, ASMAWATI Mohd Zabidi Noor, et al. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts[J]. International Journal of Hydrogen Energy, 2021, 46(60): 31024-31040.
|
48 |
Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst[J]. Chemical Engineering Journal, 2001, 82(1): 311-328.
|
49 |
KAWI Sibudjing, KATHIRASER Yasotha, NI Jun, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21): 3556-3575.
|
50 |
GAO Xingyuan, LI Jinyu, ZHENG Mudi, et al. Recent progress in anti-coking Ni catalysts for thermo-catalytic conversion of greenhouse gases[J]. Process Safety and Environmental Protection, 2021, 156: 598-616.
|
51 |
GAYÁN P, DE DIEGO L F, GARCÍA-LABIANO F, et al. Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2008, 87(12): 2641-2650.
|
52 |
Ma S, Cheng F, Meng J, et al. Ni-enhanced red mud oxygen carrier for chemical looping steam methane reforming[J]. Fuel Processing Technology, 2022, 230: 107204.
|
53 |
MESHKSAR M, DANESHMAND-JAHROMI S, RAHIMPOUR M R. Synthesis and characterization of cerium promoted Ni/SBA-16 oxygen carrier in cyclic chemical looping steam methane reforming[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 73-82.
|
54 |
FENG Y, WANG N, GUO X. Influence mechanism of supports on the reactivity of Ni-based oxygen carriers for chemical looping reforming: A DFT study[J]. Fuel, 2018, 229: 88-94.
|
55 |
LIU Rui, ZHANG Xianhua, LIU Tao, et al. Dynamic oxygen migration and reaction over ceria-supported nickel oxides in chemical looping partial oxidation of methane[J]. Applied Catalysis B: Environmental, 2023, 328: 122478.
|
56 |
孙艳茹. 铁基载氧体颗粒结构设计及其化学链甲烷干重整性能研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2021.
|
|
SUN Yanru. Particle structure design of iron-based oxygen carrier toward to chemical looping dry reforming[D].Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2021.
|
57 |
GUAN Yu, LIU Yinhe, LIN Xiaolong, et al. Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers[J]. Energy & Fuels, 2022, 36(23): 13956-13984.
|
58 |
MORE Amey, BHAVSAR Saurabh, VESER Prof Götz. Iron-nickel alloys for carbon dioxide activation by chemical looping dry reforming of methane[J]. Energy Technology, 2016, 4(10): 1147-1157.
|
59 |
ZHANG Huixin, YU Xiyang, SU Xue, et al. Dopant-Enhanced harmonization of α-Fe2O3 oxygen migration and surface catalytic reactions during chemical looping reforming of methane[J]. Chemical Engineering Journal, 2024, 481: 148446.
|
60 |
DE VOS Yoran, JACOBS Marijke, VAN DRIESSCHE Isabel, et al. Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production[J]. International Journal of Greenhouse Gas Control, 2018, 70: 12-21.
|
61 |
LI Yang, LIU Mingkai, ZHANG Jinrui, et al. Mid-temperature chemical looping methane reforming for hydrogen production via iron-based oxygen carrier particles[J]. Fuel Processing Technology, 2024, 253: 108026.
|
62 |
王志美. 制备参数对铜基载氧体性能影响的实验研究[D]. 沈阳: 东北大学, 2013.
|
|
WANG Zhimei. The experiment study of synthesis parameters on the Cu-based oxygen carriers[D].Shenyang: Northeastern University, 2013.
|
63 |
NEAL Luke, SHAFIEFARHOOD Arya, LI Fanxing. Effect of core and shell compositions on MeO x @La y Sr1- y FeO3 core-shell redox catalysts for chemical looping reforming of methane[J]. Applied Energy, 2015, 157: 391-398.
|
64 |
CABELLO A, MENDIARA T, ABAD A, et al. Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier[J]. Fuel, 2022, 322: 124250.
|
65 |
NADGOUDA Sourabh G, GUO Mengqing, TONG Andrew, et al. High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process[J]. Applied Energy, 2019, 235: 1415-1426.
|
66 |
JIN Hongguang, OKAMOTO Toshihiro, ISHIDA Masaru. Development of a novel chemical-looping combustion: Synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels, 1998, 12(6): 1272-1277.
|
67 |
ALALWAN Hayder A, CWIERTNY David M, GRASSIAN Vicki H. Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: A materials characterization approach to understanding oxygen carrier performance[J]. Chemical Engineering Journal, 2017, 319: 279-287.
|
68 |
曾良鹏, 黄樊, 祝星, 等. 铈基与钴基Co3O4-CeO2氧载体上甲烷化学链转化特性: 产物选择性控制[J]. 高等学校化学学报, 2017, 38(1): 115-125.
|
|
ZENG Liangpeng, HUANG Fan, ZHU Xing, et al. Chemical looping conversion of methane over CeO2-based and Co3O4-based Co3O4-CeO2 oxygen carriers: Controlling of product selectivity[J]. Chemical Journal of Chinese Universities, 2017, 38(1): 115-125.
|
69 |
Tian H, Simonyi T, Poston J, et al. Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8418-8430.
|
70 |
ADÁNEZ J, DE DIEGO L F, GARCÍA LABIANO F, et al. Selection of oxygen carriers for chemical-looping combustion[J]. Energy & Fuels, 2004, 18(2): 371-377.
|
71 |
ZHAO Yunlei, JIN Bo, YAO Wenxing, et al. Thermodynamic simulation and experimental investigation of manganese oxide (MnO x ) for integrated CO2 capture and conversion via chemical looping route[J]. Fuel, 2023, 344: 127997.
|
72 |
CAMPBELL Charles T, PEDEN Charles H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.
|
73 |
Zheng Y, Zhu X, Wang H, et al. Characteristic of macroporous CeO2-ZrO2 oxygen carrier for chemical-looping steam methane reforming[J]. Journal of Rare Earths, 2014, 32(9): 842-848.
|
74 |
LI Ruiming, ZHANG Juping, SHI Jian, et al. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1458-1470.
|
75 |
ZHENG Yane, LI Kongzhai, WANG Hua, et al. Enhanced activity of CeO2-ZrO2 solid solutions for chemical-looping reforming of methane via tuning the macroporous structure[J]. Energy & Fuels, 2016, 30(1): 638-647.
|
76 |
ZHANG Weixiang, ZHANG Lina, PEI S, et al. Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane[J]. Fuel, 2023, 345: 128208.
|
77 |
MICCIO F, LANDI E, NATALI Murri A, et al. Fluidized bed reforming of methane by chemical looping with cerium oxide oxygen carriers[J]. Chemical Engineering Research and Design, 2023, 191: 568-577.
|
78 |
ZHAO Kun, HE Fang, HUANG Zhen, et al. CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 680-688.
|
79 |
SHI R, WATERHOUSE G I N, ZHANG T. Recent progress in photocatalytic CO2 reduction over perovskite oxides[J]. Solar RRL, 2017, 1(11): 1700126.
|
80 |
FARHANG Yaghoub, Ehsan TAHERI-NASSAJ, REZAEI Mehran. Improvement of CO oxidation and CH4 combustion by Pd and Pt partial substitution on LaMn0.5Cu0.5O3 perovskite[J]. Langmuir, 2023, 39(44): 15465-15473.
|
81 |
Hou X, Ren J, Li F, et al. Research progress of perovskite materials as catalysts[J]. IOP Conference Series: Earth and Environmental Science, 2019, 295(3): 032020.
|
82 |
RONG Yaoguang, HU Yue, MEI Anyi, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235.
|
83 |
DING Haoran, XU Yongqing, LUO Cong, et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas[J]. Energy Conversion and Management, 2018, 171: 12-19.
|
84 |
CHANG Wenxi, GAO Yuming, HE Jiahui, et al. Asymmetric coordination activated lattice oxygen in perovskite ferrites for selective anaerobic oxidation of methane[J]. Journal of Materials Chemistry A, 2023, 11(9): 4651-4660.
|
85 |
XIA Xue, CHANG Wenxi, CHENG Shuwen, et al. Oxygen activity tuning via FeO6 octahedral tilting in perovskite ferrites for chemical looping dry reforming of methane[J]. ACS Catalysis, 2022, 12(12): 7326-7335.
|
86 |
LEE Minbeom, Hyun Suk LIM, KIM Yikyeom, et al. Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3 [J]. Energy Conversion and Management, 2020, 207: 112507.
|
87 |
CAO Dingshan, LUO Cong, WU Fan, et al. Screening loaded perovskite oxygen carriers for chemical looping steam methane reforming[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107315.
|
88 |
YIN Xianglei, WANG Shen, WANG Baoyi, et al. Perovskite-type LaMn1- x B x O3+ δ (B=Fe, CO and Ni) as oxygen carriers for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2021, 422: 128751.
|
89 |
GALINSKY N, MISHRA A, ZHANG J, et al. Ca1- x A x MnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)[J]. Applied Energy, 2015, 157: 358-367.
|
90 |
沈阳, 赵坤, 何方, 等. 三维有序大孔钙钛矿型氧化物LaFe0.7Co0.3O3的合成及甲烷化学链水蒸气重整性能[J]. 燃料化学学报, 2016, 44(10): 1168-1176.
|
|
SHEN Yang, ZHAO Kun, HE Fang, et al. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1168-1176.
|
91 |
Li M, Zhao K, Zhao Z, et al. Enhanced hydrogen-rich syngas generation in chemical looping methane reforming using an interstitial doped La1.6Sr0.4FeCoO6 [J]. International Journal of Hydrogen Energy, 2019, 44(21): 10250-10264.
|
92 |
YANG Liuqing, ZHAO Zirui, CUI Chen, et al. Effect of nickel and cobalt doping on the redox performance of SrFeO3- δ toward chemical looping dry reforming of methane[J]. Energy & Fuels, 2023, 37(16): 12045-12057.
|
93 |
TIAN M, WANG X D, ZHANG T. Hexaaluminates: A review of the structure, synthesis and catalytic performance[J]. Catalysis Science & Technology, 2016, 6(7): 1984-2004.
|
94 |
YANG Qian, CHEN Lihua, JIN Nannan, et al. Boosted carbon resistance of ceria-hexaaluminate by in situ formed CeFe x Al1– x O3 as oxygen pool for chemical looping dry reforming of methane[J]. Applied Catalysis B: Environmental, 2023, 330: 122636.
|
95 |
靳南南, 张立, 朱燕燕, 等. 甲烷化学链重整制合成气用氧载体的研究进展[J]. 天然气化工(C1化学与化工), 2019, 44(3): 106-116.
|
|
JIN Nannan, ZHANG Li, ZHU Yanyan, et al. Research progress in oxygen carriers for syngas production via chemical looping reforming of methane[J]. Natural Gas Chemical Industry, 2019, 44(3): 106-116.
|
96 |
ZHU Yanyan, WANG Xiaodong, WANG Aiqin, et al. Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy[J]. Journal of Catalysis, 2011, 283(2): 149-160.
|
97 |
ZHU Yanyan, LIU Ruilin, SUN Xueyan, et al. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10218-10231.
|
98 |
Zhu Y, Jin N, Liu R, et al. Bimetallic BaFe2MAl9O19 (M = Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane[J]. Applied Energy, 2020, 258: 114070.
|
99 |
刘永卓. 化学链燃烧过程钙基载氧体的研究[D]. 青岛: 青岛科技大学, 2010.
|
|
LIU Yongzhuo. Study on the Ca-based oxygen carriers for the chemical looping combustion[D].Qingdao: Qingdao University of Science & Technology, 2010.
|
100 |
DANIEL Sastre, ÁLVAREZ Galván Consuelo, PATRICIA Pizarro, et al. Enhanced performance of CH4 dry reforming over La0.9Sr0.1FeO3/YSZ under chemical looping conditions[J]. Fuel, 2022, 309: 122122.
|
101 |
LONG Yanhui, LI Kongzhai, GU Z, et al. Ce-Fe-Zr-O/MgO coated monolithic oxygen carriers for chemical looping reforming of methane to co-produce syngas and H2 [J]. Chemical Engineering Journal, 2020, 388: 124190.
|
102 |
HESSAMODIN Nourbakhsh, YASIN Khani, AKBAR Zamaniyan, et al. Hydrogen and syngas production through dynamic chemical looping reforming-decomposition of methane[J]. International Journal of Hydrogen Energy, 2022, 47(17): 9835-9852.
|
103 |
NAZARI Mousa, SOLTANIEH Mohammad, HEYDARINASAB Amir, et al. Synthesis of a new self-supported Mg y (Cu x Ni0.6- x Mn0.4)1- y Fe2O4 oxygen carrier for chemical looping steam methane reforming process[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19397-19420.
|
104 |
HU Jun, LI Haobo, CHEN Shiyi, et al. Enhanced Fe2O3/Al2O3 oxygen carriers for chemical looping steam reforming of methane with different Mg ratios[J]. Industrial & Engineering Chemistry Research, 2022, 61(2): 1022-1031.
|
105 |
SUN Yanru, LI Jun, LI Hongzhong. Core-shell-like Fe2O3/MgO oxygen carriers matched with fluidized bed reactor for chemical looping reforming[J]. Chemical Engineering Journal, 2022, 431: 134173.
|
106 |
KUO Yulin, HSU Weu-Mau, CHIU Ping-Chin, et al. Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process[J]. Ceramics International, 2013, 39(5): 5459-5465.
|
107 |
BOUKHA Z, JIMÉNEZ-GONZÁLEZ C, RIVAS B, et al. Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions[J]. Applied Catalysis B-environmental, 2014, 158: 190-201.
|
108 |
MINHAS Rashid, KHOJA Asif Hussain, NAEEM Nida, et al. Thermal steam methane reforming over bimetal-loaded hemp-derived activated carbon-based catalyst for hydrogen production[J]. Research on Chemical Intermediates, 2023, 49(7): 3181-3203.
|
109 |
Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials[J]. Proceedings of the Combustion Institute, 2007, 31(2): 1789-1795.
|
110 |
刘黎明. 煤基化学链燃烧技术的氧载体研究[D]. 武汉: 华中科技大学, 2007.
|
|
LIU Liming. Study on oxygen carriers for chemical looping combustion of coal[D].Wuhan: Huazhong University of Science and Technology, 2007.
|
111 |
YIKYEOM Kim, SEOK Kim Hyeon, DOHYUNG Kang, et al. Enhanced redox performance of LaFeO3 perovskite through in situ exsolution of iridium nanoparticles for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2023, 468: 143662.
|
112 |
SAYYED Sheraj Z, VAIDYA Prakash D. Chemical looping-steam reforming of biogas and methane over lanthanum-based perovskite for improved production of syngas and hydrogen[J]. Energy & Fuels, 2023, 37(23): 19082-19091.
|
113 |
TANG Mingchen, XU Long, FAN Maohong. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Applied Energy, 2015, 151: 143-156.
|
114 |
Jochen STRÖHLE, ORTH Matthias, EPPLE Bernd. Design and operation of a 1MWth chemical looping plant[J]. Applied Energy, 2014, 113: 1490-1495.
|
115 |
MARX Falko, DIERINGER Paul, Jochen STRÖHLE, et al. Design of a 1MWth pilot plant for chemical looping gasification of biogenic residues[J]. Energies, 2021, 14(9): 2581.
|
116 |
HOSSEINI Seyyed Yaghoob, KHOSRAVI-NIKOU Mohammad Reza, SHARIATI Ahmad. Production of hydrogen and syngas using chemical looping technology via cerium-iron mixed oxides[J]. Chemical Engineering and Processing-Process Intensification, 2019, 139: 23-33.
|
117 |
WANG Yajing, ZHENG Yane, WANG Yuhao, et al. Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane[J]. Applied Surface Science, 2019, 481: 151-160.
|
118 |
PARK Cody, HSIEH Tien-Lin, POTTIMURTHY Yaswanth, et al. Design and operations of a 15kWth subpilot unit for the methane-to-syngas chemical looping process with CO2 utilization[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6886-6899.
|
119 |
ZENG Liang, LUO Siwei, SRIDHAR Deepak, et al. Chemical looping processes: Particle characterization, ionic diffusion-reaction mechanism and reactor engineering[J]. Reviews in Chemical Engineering, 2012, 28(1): 1-42.
|
120 |
JOSHI Anuj, SHAH Vedant, MOHAPATRA Pinak, et al. Chemical looping—A perspective on the next-gen technology for efficient fossil fuel utilization[J]. Advances in Applied Energy, 2021, 3: 100044.
|
121 |
ORTIZ M, DE DIEGO L F, ABAD A, et al. Hydrogen production by auto-thermal chemical-looping reforming in a pressurized fluidized bed reactor using Ni-based oxygen carriers[J]. International Journal of Hydrogen Energy, 2010, 35(1): 151-160.
|
122 |
LYNGFELT Anders, MOLDENHAUER Patrick, BIERMANN Max, et al. Operational experiences of chemical-looping combustion with 18 manganese ores in a 300W unit[J]. International Journal of Greenhouse Gas Control, 2023, 127: 103937.
|
123 |
Tobias PRÖLL, KOLBITSCH Philipp, Johannes BOLHÀR-NORDENKAMPF, et al. A novel dual circulating fluidized bed system for chemical looping processes[J]. AIChE Journal, 2009, 55(12): 3255-3266.
|
124 |
ZACHARIAS Robert, VISENTIN Simone, BOCK Sebastian, et al. High-pressure hydrogen production with inherent sequestration of a pure carbon dioxide stream via fixed bed chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(16): 7943-7957.
|
125 |
BOCK Sebastian, ZACHARIAS Robert, HACKER Viktor. Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10kW fixed-bed chemical looping system[J]. Sustainable Energy & Fuels, 2020, 4(3): 1417-1426.
|
126 |
HUA Xiuning, ZHU Jie, WU Xiaoshuang, et al. Packed bed chemical looping platform: Design and operation of 30kWth pilot unit[J]. Procedia Environmental Sciences, 2016, 31: 81-90.
|
127 |
Magnus RYDÉN, LYNGFELT Anders. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1271-1283.
|
128 |
GARCÍA-DÍEZ E, GARCÍA-LABIANO F, DE DIEGO L F, et al. Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities[J]. Applied Energy, 2016, 169: 491-498.
|
129 |
HE Zirui, DE WILDE Juray. Numerical simulation of commercial scale autothermal chemical looping reforming and bi-reforming for syngas production[J]. Chemical Engineering Journal, 2021, 417: 128088.
|
130 |
KHAN Mohammed N, SHAMIM Tariq. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15745-15760.
|
131 |
KHAN Mohammed N, SHAMIM Tariq. Investigation of hydrogen generation in a three reactor chemical looping reforming process[J]. Applied Energy, 2016, 162: 1186-1194.
|
132 |
MA Shiwei, LI Meng, WANG Genbao, et al. Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation[J]. Chemical Engineering Journal, 2018, 346: 712-725.
|
133 |
CHAVDA Akash, MEHTA Pranav, HARICHANDAN Atal. Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture[J]. Experimental and Computational Multiphase Flow, 2022, 4(4): 360-376.
|
134 |
ZHENG Teng, LI Mengjun, MEI Daofeng, et al. Effect of H2S presence on chemical looping reforming (CLR) of biogas with a firebrick supported NiO oxygen carrier[J]. Fuel Processing Technology, 2022, 226: 107088.
|
135 |
STOPPACHER B, BOCK S, MALLI K, et al. The influence of hydrogen sulfide contaminations on hydrogen production in chemical looping processes[J]. Fuel, 2022, 307: 121677.
|