Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2673-2683.DOI: 10.16085/j.issn.1000-6613.2023-2063
• Catalysis and material technology • Previous Articles
LIU Siyu1(), YANG Juan1(), CHEN Pei1, CHEN Zutian1, YAN Bin1, LIU Yuhong1, QIU Jieshan2()
Received:
2023-11-28
Revised:
2024-03-12
Online:
2024-06-15
Published:
2024-05-15
Contact:
YANG Juan, QIU Jieshan
刘思宇1(), 杨卷1(), 陈培1, 陈祖田1, 闫斌1, 刘育红1, 邱介山2()
通讯作者:
杨卷,邱介山
作者简介:
刘思宇(1996—),男,博士研究生,研究方向为碳基水系锌离子储能。E-mail:liu-siyu@stu.xjtu.edu.cn。
基金资助:
CLC Number:
LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683.
刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2063
样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
---|---|---|---|---|---|---|---|
吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
NPCN-700 | 15.32 | 4.45 | 1.34 | 9.53 | 29.1 | 8.7 | 62.2 |
NPCN-800 | 11.38 | 2.47 | 2.15 | 6.76 | 21.7 | 18.9 | 59.4 |
NPCN-900 | 7.91 | 1.25 | 1.54 | 5.12 | 15.7 | 19.5 | 64.8 |
样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
---|---|---|---|---|---|---|---|
吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
NPCN-700 | 15.32 | 4.45 | 1.34 | 9.53 | 29.1 | 8.7 | 62.2 |
NPCN-800 | 11.38 | 2.47 | 2.15 | 6.76 | 21.7 | 18.9 | 59.4 |
NPCN-900 | 7.91 | 1.25 | 1.54 | 5.12 | 15.7 | 19.5 | 64.8 |
1 | KITTNER Noah, LILL Felix, KAMMEN Daniel M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2(9): 17125. |
2 | ZHAO Yun, SETZLER Brian P, WANG Junhua, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
3 | 王满, 车晓刚, 刘思宇, 等. 锌离子电容器用碳基正极材料的研究进展[J]. 新型炭材料, 2021, 36(1): 155-166. |
WANG Man, CHE Xiaogang, LIU Siyu, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials, 2021, 36(1): 155-166. | |
4 | WANG Yanyan, SUN Shirong, WU Xiaoliang, et al. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators[J]. Nano-Micro Letters, 2023, 15(1): 78. |
5 | LI Zhiwei, AN Yufeng, DONG Shengyang, et al. Progress on zinc ion hybrid supercapacitors: Insights and challenges[J]. Energy Storage Materials, 2020, 31: 252-266. |
6 | TANG Heng, YAO Junjun, ZHU Yirong. Recent developments and future prospects for zinc-ion hybrid capacitors: A review[J]. Advanced Energy Materials, 2021, 11(14): 2003994.1-2003994.23. |
7 | WANG Haiyan, YE Wuquan, YANG Ying, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021, 85: 105942. |
8 | CHEN Shengmei, MA Longtao, ZHANG Kui, et al. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres[J]. Journal of Materials Chemistry A, 2019, 7(13): 7784-7790. |
9 | DONG Liubing, MA Xinpei, LI Yang, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2018, 13: 96-102. |
10 | WU Mengcheng, HU Xi, ZHENG Wanying, et al. Recent advances in porous carbon nanosheets for high-performance metal-ion capacitors[J]. Chemical Engineering Journal, 2023, 466: 143077. |
11 | DU Wencheng, Edison Huixiang ANG, YANG Yang, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2020, 13(10): 3330-3360. |
12 | HAO Long, LI Xianglong, ZHI Linjie. Carbonaceous electrode materials for supercapacitors[J]. Advanced Materials, 2013, 25(28): 3899-3904. |
13 | XIAO Jing, HAN Junwei, ZHANG Chen, et al. Dimensionality, function and performance of carbon materials in energy storage devices[J]. Advanced Energy Materials, 2022, 12(4): 2100775. |
14 | KUMAR Sachin, SAEED Ghuzanfar, ZHU Ling, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review[J]. Chemical Engineering Journal, 2021, 403: 126352. |
15 | DENG Xiaoyang, LI Jiajun, SHAN Zhu, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A, 2020, 8(23): 11617-11625. |
16 | YIN Jian, ZHANG Wenli, WANG Wenxi, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials, 2020, 10(37): 2001705. |
17 | ZHAO Lei, JIAN Wenbin, ZHANG Xiaoshan, et al. Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors[J]. Journal of Energy Storage, 2022, 53: 105095. |
18 | LI Jie, ZHANG Jihua, YU Lai, et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors[J]. Energy Storage Materials, 2021, 42: 705-714. |
19 | WU Dandan, JI Chenchen, MI Hongyu, et al. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors[J]. Nanoscale, 2021, 13(37): 15869-15881. |
20 | GHOSH Subrata, BARG Suelen, JEONG Sang Mun, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239. |
21 | ZHANG Haozhe, LIU Qiyu, FANG Yuanbin, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials, 2019, 31(44): 1904948. |
22 | HAN Weiwei, LIU Guicheng, SEO Woncheol, et al. Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage[J]. Carbon, 2021, 184: 534-543. |
23 | ZHU Xiaoqing, GUO Fengjiao, YANG Qi, et al. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework[J]. Journal of Power Sources, 2021, 506: 230224. |
24 | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. |
25 | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
26 | PERDEW John P, BURKE Kieron, ERNZERHOF Matthias. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
27 | GRIMME Stefan, ANTONY Jens, EHRLICH Stephan, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
28 | ZHANG Wen, NOWLAN Daniel T, THOMSON Lisa M, et al. Orthogonal, convergent syntheses of dendrimers based on melamine with one or two unique surface sites for manipulation[J]. Journal of the American Chemical Society, 2001, 123(37): 8914-8922. |
29 | QIU Xuan, XU Jie, ZHOU Kang, et al. Molecular tailoring of p-type organics for zinc batteries with high energy density[J]. Angewandte Chemie (International Ed in English), 2023, 62(30): e202304036. |
30 | XU Yunpeng, CAI Pingwei, CHEN Kai, et al. Hybrid acid/alkali all covalent organic frameworks battery[J]. Angewandte Chemie (International Ed in English), 2023, 62(18): e202215584. |
31 | SHI Yanjun, WANG Pengcheng, GAO Haiguang, et al. π-Conjugated N-heterocyclic compound with redox-active quinone and pyrazine moieties as a high-capacity organic cathode for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2023, 461: 141850. |
32 | YANG Jin, HUA Haiming, YANG Huiya, et al. A high utilization and environmentally sustainable all-organic aqueous zinc-ion battery enabled by a molecular architecture design[J]. Advanced Energy Materials, 2023, 13(25): 2204005. |
33 | CHEN Yuan, DAI Huichao, FAN Kun, et al. A recyclable and scalable high-capacity organic battery[J]. Angewandte Chemie (International Ed in English), 2023, 62(27): e202302539. |
34 | SEKHON Satpal Singh, PARK Jin-Soo. Biomass-derived N-doped porous carbon nanosheets for energy technologies[J]. Chemical Engineering Journal, 2021, 425: 129017. |
35 | LU Yanyan, LI Zhiwei, BAI Zhengyu, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy, 2019, 66: 104132. |
36 | LIU Jinlong, ZHANG Yaqian, ZHANG Lei, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31(24): 1901261. |
37 | MA Cheng, CHEN Xueyong, LONG Donghui, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon, 2017, 118: 699-708. |
38 | ELGENDY Amr, BASIONY N M EL, EL-TAIB HEAKAL F, et al. Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode activematerial for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 466: 228294. |
39 | CHEN Xiangnan, ZHANG Yan, TAO Lei, et al. Ferromagnetic carbonized polyaniline/nanodiamond hybrids for ultrabroad-band electromagnetic absorption[J]. Carbon, 2020, 164: 224-234. |
40 | LIU Mengmeng, ZHU Xiaohang, SONG Yujie, et al. Bifunctional edge-rich nitrogen doped porous carbon for activating oxygen and sulfur[J]. Advanced Functional Materials, 2023, 33(11): 2213395. |
41 | ZHAO Fengjia, ZHU Yun, CHEN Ying, et al. Acidified nitrogen self-doped porous carbon with superprotonic conduction for applications in solid-state proton battery[J]. Small, 2024, 20(8): e2305765. |
42 | CHE Xiaogang, YANG Juan, LIU Siyu, et al. Multilayer-dense porous carbon nanosheets with high volumetric capacitance for supercapacitors[J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8908-8917. |
43 | WANG Yingshu, YANG Juan, LIU Siyu, et al. 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage[J]. Carbon, 2023, 201: 624-632. |
44 | LIU Siyu, YANG Juan, WANG Man, et al. Encapsulation of redox p-benzoquinone into microporous carbon frameworks by a diamine covalent-grafted strategy for aqueous hybrid supercapacitors[J]. ACS Applied Energy Materials, 2023, 6(5): 2989-2998. |
45 | WANG Man, YANG Juan, LIU Siyu, et al. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 560: 69-76. |
46 | LIU Siyu, JIA Kaili, YANG Juan, et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage[J]. Chemical Engineering Journal, 2023, 475: 146181. |
47 | SHANG Kezheng, LIU Yangjie, CAI Pingwei, et al. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2022, 10(12): 6489-6498. |
48 | FEI Rixin, WANG Huanwen, WANG Qiang, et al. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials, 2020, 10(47): 2002741. |
49 | SUN Tianjiang, ZHANG Weijia, NIAN Qingshun, et al. Molecular engineering design for high-performance aqueous zinc-organic battery[J]. Nano-Micro Letters, 2023, 15(1): 36. |
50 | WANG Man, YANG Juan, LIU Siyu, et al. Nitrogen-doped porous carbon electrode for aqueous iodide redox supercapacitor[J]. Chemical Engineering Journal, 2023, 451: 138501. |
[1] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[2] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[3] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[4] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
[5] | WU Jianyang, SHEN Lanyao, YU Yongli, WANG Runa, JIANG Ning, YANG Xinhe, QIU Jingyi, ZHOU Henghui. Preparation and performance optimization of high-nickel cathode materials in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1387-1394. |
[6] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[7] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[8] | YU Songmin, JIN Hongbo, YANG Minghu, YU Haifeng, JIANG Hao. Synthesis and modification of F-doped olivine LiFe0.5Mn0.5PO4 cathode materials for Li-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. |
[9] | XIA Yinping, LI Zhoupeng, WANG Qianqian. Strategy toward positive electrode design for high-loading lithium-sulfur battery [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 364-375. |
[10] | YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472. |
[11] | WANG Bo, ZHANG Chang’an, ZHAO Limin, YUAN Jun, SONG Yongyi. Industrial wastewater treatment technology based on boron-doped diamond electrodes:A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 501-513. |
[12] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[13] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[14] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[15] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |