Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 305-314.DOI: 10.16085/j.issn.1000-6613.2024-0303
• Industrial catalysis • Previous Articles Next Articles
SONG Caicheng(), CHEN Xiaozhen, LIU Li(
), YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu
Received:
2024-02-21
Revised:
2024-06-05
Online:
2024-12-06
Published:
2024-11-20
Contact:
LIU Li
宋财城(), 陈晓贞, 刘丽(
), 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇
通讯作者:
刘丽
作者简介:
宋财城(1994—),男,博士,研究方向为馏分油加氢精制催化剂。E-mail:songcaicheng.fshy@sinopec.com。
基金资助:
CLC Number:
SONG Caicheng, CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of carbon-based carrier supported hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 305-314.
宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314.
催化剂 | fMo③ | ||
---|---|---|---|
CoMo/M | 5.35 | 1.9 | 0.27 |
CoMo/M@AC-0.1 | 4.98 | 2.6 | 0.29 |
CoMo/M@AC-0.2 | 4.91 | 2.9 | 0.30 |
CoMo/M@AC-0.5 | 5.10 | 3.1 | 0.28 |
催化剂 | fMo③ | ||
---|---|---|---|
CoMo/M | 5.35 | 1.9 | 0.27 |
CoMo/M@AC-0.1 | 4.98 | 2.6 | 0.29 |
CoMo/M@AC-0.2 | 4.91 | 2.9 | 0.30 |
CoMo/M@AC-0.5 | 5.10 | 3.1 | 0.28 |
1 | GAO Yang, HAN Wei, LONG Xiangyun, et al. Preparation of hydrodesulfurization catalysts using MoS3 nanoparticles as a precursor[J]. Applied Catalysis B: Environmental, 2018, 224: 330-340. |
2 | 陈晓贞, 刘丽, 杨成敏, 等. 氧化铝基加氢脱硫催化剂研究进展[J]. 化工进展, 2024, 43(2): 948-961. |
CHEN Xiaozhen, LIU Li, YANG Chengmin, et al. Research progress of alumina-supported hydrodesulfurization catalyst[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. | |
3 | SALEH Tawfik A, SULAIMAN Kazeem O, AL-HAMMADI Saddam A, et al. Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation[J]. Journal of Cleaner Production, 2017, 154: 401-412. |
4 | SALEH Tawfik A. Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon[J]. Journal of Cleaner Production, 2018, 172: 2123-2132. |
5 | SAHA Biswajit, VEDACHALAM Sundaramurthy, DALAI Ajay K. Review on recent advances in adsorptive desulfurization[J]. Fuel Processing Technology, 2021, 214: 106685. |
6 | Divyam JHA, MAHESHWARI Pranjal, SINGH Yugank, et al. A comparative review of extractive desulfurization using designer solvents: Ionic liquids & deep eutectic solvents[J]. Journal of the Energy Institute, 2023, 110: 101313. |
7 | ABRO Rashid, KIRAN Nusrat, AHMED Shoaib, et al. Extractive desulfurization of fuel oils using deep eutectic solvents—A comprehensive review[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107369. |
8 | ZHANG Ming, LIU Jiaqi, LI Hongping, et al. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2020, 271: 118936. |
9 | ZOU Juncong, LIN Yan, WU Shaohua, et al. Molybdenum dioxide nanoparticles anchored on nitrogen-doped carbon nanotubes as oxidative desulfurization catalysts: Role of electron transfer in activity and reusability[J]. Advanced Functional Materials, 2021, 31(22): 2100442. |
10 | SILVA Tiago P, PAIXÃO Susana M, ALVES Luís. A new impetus for biodesulfurization: By passing sulfate inhibition in biocatalyst production[J]. Green Chemistry, 2023, 25(16): 6416-6431. |
11 | JIA Tipei, ZHANG Liang, PENG Yi, et al. The enrichment of a specialized elemental sulfur-producing bacterium under extremely acidic condition[J]. Chemical Engineering Journal, 2023, 472: 145093. |
12 | LIU Jixing, LIU Xiangqi, YAN Rixin, et al. Active phase morphology engineering of NiMo/Al2O3 through La introduction for boosting hydrodesulfurization of 4,6-DMDBT[J]. Petroleum Science, 2023, 20(2): 1231-1237. |
13 | LIU Jixing, ZHU Jingyi, ZHU Jie, et al. One-pot three-dimensional printing of a hierarchical NiMo/Al2O3 monolithic catalyst for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. ACS Applied Materials & Interfaces, 2023, 15(28): 33593-33604. |
14 | TANIMU Abdulkadir, ALHOOSHANI Khalid. Advanced hydrodesulfurization catalysts: A review of design and synthesis[J]. Energy & Fuels, 2019, 33(4): 2810-2838. |
15 | XU He, JIANG Weixuan, WANG Dongxu, et al. Controlling the growth of ZnNiMoS x on biomass-derived porous carbon materials for deep hydrodesulfurization[J]. Applied Catalysis A: General, 2023, 660: 119188. |
16 | NIKULSHIN P A, SALNIKOV V A, MOZHAEV A V, et al. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions[J]. Journal of Catalysis, 2014, 309: 386-396. |
17 | 刘丽, 郭蓉, 孙进, 等. 柴油加氢脱硫催化剂的研究进展[J]. 化工进展, 2016, 35(11): 3503-3510. |
LIU Li, GUO Rong, SUN Jin, et al. The research development of diesel hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3503-3510. | |
18 | 陈晓贞, 刘丽, 杨成敏, 等. 负载型加氢精制催化剂的性质和应用[J]. 当代化工, 2023, 52(7): 1680-1684. |
CHEN Xiaozhen, LIU Li, YANG Chengmin, et al. Properties and application of supported hydrofining catalyst[J]. Contemporary Chemical Industry, 2023, 52(7): 1680-1684. | |
19 | HENSEN E J M, DE BEER V H J, VAN VEEN J A R, et al. A refinement on the notion of type Ⅰ and Ⅱ (Co)MoS phases in hydrotreating catalysts[J]. Catalysis Letters, 2002, 84(1): 59-67. |
20 | ZHOU Wenwu, YANG Li, LIU Lang, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2020, 268: 118428. |
21 | CHEN Zhentao, LIU Yaxin, CHEN Jian, et al. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hydrodesulfurization process[J]. Chinese Journal of Chemical Engineering, 2022, 41: 392-402. |
22 | MAITY S K, FLORES L, ANCHEYTA J, et al. Carbon-modified alumina and alumina-carbon-supported hydrotreating catalysts[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1190-1195. |
23 | MAITY S K, ANCHEYTA J. Carbon modified Y zeolite used as support material for hydroprocessing catalysts[J]. Catalysis Today, 2010, 150(3/4): 231-236. |
24 | NIKULSHIN P A, SALNIKOV V A, VARAKIN A N, et al. The use of CoMoS catalysts supported on carbon-coated alumina for hydrodeoxygenation of guaiacol and oleic acid[J]. Catalysis Today, 2016, 271: 45-55. |
25 | NATH PRAJAPATI Yogendra, VERMA Nishith. Hydrodesulfurization of thiophene on activated carbon fiber supported NiMo catalysts[J]. Energy & Fuels, 2018, 32(2): 2183-2196. |
26 | CUI Feng, LI Guangci, LI Xuebing, et al. Enhancement of hydrodesulfurization of 4,6-dimethyldibenzothiophene catalyzed by CoMo catalysts supported on carbon-covered γ -Al2O3 [J]. Catalysis Science & Technology, 2015, 5(1): 549-555. |
27 | DUAN Zaihua, YUAN Zhen, JIANG Yadong, et al. Amorphous carbon material of daily carbon ink: Emerging applications in pressure, strain, and humidity sensors[J]. Journal of Materials Chemistry C, 2023, 11(17): 5585-5600. |
28 | PENG Liang, PENG Huarong, LI Wei, et al. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials[J]. Nature Protocols, 2023, 18(4): 1155-1178. |
29 | TANG Yijian, DING Jiani, ZHOU Wenxuan, et al. Design of uniform hollow carbon nanoarchitectures: Different capacitive deionization between the hollow shell thickness and cavity size[J]. Advanced Science, 2023, 10(9): e2206960. |
30 | YU Le, HU Han, WU Haobin, et al. Complex hollow nanostructures: Synthesis and energy-related applications[J]. Advanced Materials, 2017, 29(15): 1604563. |
31 | IWANOW Melanie, Tobias GÄRTNER, SIEBER Volker, et al. Activated carbon as catalyst support: Precursors, preparation, modification and characterization[J]. Beilstein Journal of Organic Chemistry, 2020, 16: 1188-1202. |
32 | SONG Caicheng, LIN Hua, WANG Tianwei, et al. Targeted synthesis of “urechis unicinctus”-like nitrogen-doped porous carbon nanorods for supercapacitors[J]. Energy & Fuels, 2023, 37(10): 7511-7521. |
33 | WANG Hong, SHAO Yue, MEI Shilin, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews, 2020, 120(17): 9363-9419. |
34 | SALEH Tawfik A, AL-HAMMADI Saddam A, ABDULLAHI Ibrahim Munkaila, et al. Synthesis of molybdenum cobalt nanocatalysts supported on carbon for hydrodesulfurization of liquid fuels[J]. Journal of Molecular Liquids, 2018, 272: 715-721. |
35 | PRABHU N, DALAI A K, ADJAYE J. Hydrodesulphurization and hydrodenitrogenation of light gas oil using NiMo catalyst supported on functionalized mesoporous carbon[J]. Applied Catalysis A: General, 2011, 401(1/2): 1-11. |
36 | LIANG Jilei, FAN Mengwei, WU Mengmeng, et al. In situ synthesis of MoS2 nanoflakes within a 3D mesoporous carbon framework for hydrodesulfurization of DBT[J]. Journal of Catalysis, 2022, 415: 153-164. |
37 | WANG Enlai, LI Qinghong, SONG Mingyu, et al. Melamine foam-supported CoMo catalysts with three-dimensional porous structure for effective hydrodesulfurization of thiophene[J]. Fuel, 2023, 337: 127225. |
38 | PRIETO Gonzalo, Harun TÜYSÜZ, DUYCKAERTS Nicolas, et al. Hollow nano- and microstructures as catalysts[J]. Chemical Reviews, 2016, 116(22): 14056-14119. |
39 | BAO Wenjing, FENG Chao, ZHANG Cong, et al. Construction of high content CoMoS active sites through the combination of Co5Mo10 molecular precursors and inert carbon matrix support for deep hydrodesulfurization[J]. Journal of Catalysis, 2023, 426: 71-85. |
40 | YANG Lan, WANG Xuzhen, LIU Yang, et al. Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2017, 200: 211-221. |
41 | XU Jundong, GUO Yunfeng, HUANG Tingting, et al. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2019, 244: 385-395. |
42 | MAHMOUDABADI Zohal Safaei, TAVASOLI Ahmad, RASHIDI Alimorad, et al. Catalytic activity of synthesized 2D MoS2/graphene nanohybrids for the hydrodesulfurization of SRLGO: Experimental and DFT study[J]. Environmental Science and Pollution Research, 2021, 28(5): 5978-5990. |
43 | WANG Dongxu, WANG Lei, JIAO Yanqing, et al. The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization[J]. Nano Research, 2022, 15(8): 7052-7062. |
44 | BEHNEJAD Babak, ABDOUSS Majid, TAVASOLI Ahmad. Effect of graphene functionalizing on the performance of NiMo/graphene in HDS and HDN reactions[J]. Petroleum Science, 2019, 16(5): 1185-1195. |
45 | HAJJAR Zeinab, KAZEMEINI Mohammad, RASHIDI Alimorad, et al. Hydrodesulfurization catalysts based on carbon nanostructures: A review[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(9): 557-569. |
46 | EATEMADI Ali, DARAEE Hadis, KARIMKHANLOO Hamzeh, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications[J]. Nanoscale Research Letters, 2014, 9(1): 393. |
47 | YAN Yibo, MIAO Jianwei, YANG Zhihong, et al. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44(10): 3295-3346. |
48 | KAZAKOV M O, KAZAKOVA M A, VATUTINA Yu V, et al. Comparative study of MWCNT and alumina supported CоMо hydrotreating catalysts prepared with citric acid as chelating agent[J]. Catalysis Today, 2020, 357: 221-230. |
49 | PINILLA J L, PURÓN H, TORRES D, et al. Carbon nanofibres coated with Ni decorated MoS2 nanosheets as catalyst for vacuum residue hydroprocessing[J]. Applied Catalysis B: Environmental, 2014, 148/149: 357-365. |
50 | PINILLA J L, PURÓN H, TORRES D, et al. Ni-MoS supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation[J]. Carbon, 2015, 81: 574-586. |
51 | YU Zhixin, FAREID Lars Erik, MOLJORD Kjell, et al. Hydrodesulfurization of thiophene on carbon nanofiber supported Co/Ni/Mo catalysts[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 482-489. |
52 | GHOSH Sourav, Laurence COURTHÉOUX, BRUNET Sylvette, et al. Effect of the microstructure of composite CoMoS/carbon catalysts on hydrotreatment performances[J]. Catalysts, 2023, 13(5): 862. |
53 | ZHANG Ge, YANG Fan, XU Zhusong, et al. Electronic structure regulation of CoMoS catalysts by N, P co-doped carbon modification for effective hydrodesulfurization[J]. Fuel, 2022, 322: 124160. |
54 | KAZAKOVA Mariya A, VATUTINA Yulia V, PROSVIRIN Igor P, et al. Boosting hydrodesulfurization activity of CoMo/Al2O3 catalyst via selective graphitization of alumina surface[J]. Microporous and Mesoporous Materials, 2021, 317: 111008. |
55 | KAZAKOVA Mariya A, SALOMATINA Anna A, PEREYMA Vasily Yu, et al. Selective hydrodesulfurization of FCC naphtha over carbon coated alumina supported CoMoS catalysts[J]. Fuel, 2023, 354: 129394. |
56 | KAZAKOVA Mariya A, VATUTINA Yulia V, SELYUTIN Alexander G, et al. Design of improved CoMo hydrotreating catalyst via engineering of carbon nanotubes@alumina composite support[J]. Applied Catalysis B: Environmental, 2023, 328: 122475. |
57 | SALEH Tawfik A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes[J]. Chemical Engineering Journal, 2021, 404: 126987. |
58 | AL-HAMMADI Saddam A, AL-AMER Adnan M, SALEH Tawfik A. Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions[J]. Chemical Engineering Journal, 2018, 345: 242-251. |
59 | WANG Huaiyuan, CHENG Xiaoshuang, XIAO Bo, et al. Surface carbon activated NiMo/TiO2 catalyst towards highly efficient hydrodesulfurization reaction[J]. Catalysis Surveys from Asia, 2015, 19(2): 78-87. |
60 | LI Licheng, YUE Hainqin, CHEN Shanshan, et al. Interfacial engineering of NiMo/mesoporous TiO2 catalyst with carbon for enhanced hydrodesulfurization performance[J]. Catalysis Letters, 2018, 148(3): 992-1002. |
61 | YU Zhiqing, WANG Xiaohan, LIU Haoran, et al. Synthesis of cube MgO@AC and catalytic performance of its supported CoMo for hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Fuel, 2023, 344: 128072. |
62 | SALEH Tawfik A, SULAIMAN Kazeem O, AL-HAMMADI Saddam A. Effect of carbon on the hydrodesulfurization activity of MoCo catalysts supported on zeolite/active carbon hybrid supports[J]. Applied Catalysis B: Environmental, 2020, 263: 117661. |
63 | Islam ALI, AL-ARFAJ Abdulrahman A, SALEH Tawfik A. Carbon nanofiber-doped zeolite as support for molybdenum based catalysts for enhanced hydrodesulfurization of dibenzothiophene[J]. Journal of Molecular Liquids, 2020, 304: 112376. |
[1] | ZHANG Ridong, LYU Jianhua, LIU Jidong, GUO Bao, LI Wensong. Ru-K-NaY catalyzed decarbonylation of dimethyl oxalate to dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 382-390. |
[2] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
[3] | LI Lin, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Chunxia, WANG Junlian, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Recovery and regeneration preparation of aluminum-based spent catalyst support [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 640-649. |
[4] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[5] | YU Delei, HAN Kangshun, CHEN Yao, LIU Xiangchun, CUI Ping. Recent advances in electroreduction of CO2 to CO using single atom Ni, N co-doped carbon-material based catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3174-3186. |
[6] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[7] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
[8] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[9] | CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. |
[10] | TAN Tianbing, QIN Zhifeng, LI Naizhen, CHANG Liping, WU Mengmeng, YU Feng, WU Qiongxiao, XIAN Yanli, JING Jianning. Deactivation mechanism of coke oven gas prehydrogenation desulfurization catalyst for industrial application [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5543-5554. |
[11] | SUN Jin, CHEN Xiaozhen, LIU Mingrui, LIU Li, NIU Shikun, GUO Rong. Deactivation mechanism of sodium poisoning hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 407-413. |
[12] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[13] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[14] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[15] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |