Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 297-304.DOI: 10.16085/j.issn.1000-6613.2024-1009
• Industrial catalysis • Previous Articles Next Articles
LI Jiayou1,2(), ZHANG Yuhan1,2, JIANG Nan1, JIANG Bolong1,2(
)
Received:
2024-06-21
Revised:
2024-09-21
Online:
2025-02-13
Published:
2025-01-15
Contact:
JIANG Bolong
李佳优1,2(), 张雨涵1,2, 姜楠1, 蒋博龙1,2(
)
通讯作者:
蒋博龙
作者简介:
李佳优(2000—),男,硕士研究生,研究方向为过渡金属析氢催化剂。E-mail:ljy2692720186@163.com。
基金资助:
CLC Number:
LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304.
李佳优, 张雨涵, 姜楠, 蒋博龙. 过渡金属硫化物NiS(x)@NF催化剂水热法制备及其析氢性能[J]. 化工进展, 2025, 44(1): 297-304.
成分 | 在盐中的质量分数/% | 浓度/g·L-1 |
---|---|---|
NaCl | 77.76 | 27.2 |
MgCl2 | 10.88 | 3.80 |
MgSO4 | 4.38 | 1.70 |
CaSO4 | 3.60 | 1.20 |
K2SO4 | 2.47 | 0.90 |
CaCO3 | 0.35 | 0.10 |
成分 | 在盐中的质量分数/% | 浓度/g·L-1 |
---|---|---|
NaCl | 77.76 | 27.2 |
MgCl2 | 10.88 | 3.80 |
MgSO4 | 4.38 | 1.70 |
CaSO4 | 3.60 | 1.20 |
K2SO4 | 2.47 | 0.90 |
CaCO3 | 0.35 | 0.10 |
催化剂名称 | η10/mV | η40/mV | η100/mV |
---|---|---|---|
NiS(0)@NF | 147 | 314.5 | 537.2 |
NiS(0.07)@NF | 108 | 197.4 | 258.4 |
NiS(0.14)@NF | 91 | 157 | 214.2 |
NiS(0.28)@NF | 96 | 168.5 | 228.5 |
催化剂名称 | η10/mV | η40/mV | η100/mV |
---|---|---|---|
NiS(0)@NF | 147 | 314.5 | 537.2 |
NiS(0.07)@NF | 108 | 197.4 | 258.4 |
NiS(0.14)@NF | 91 | 157 | 214.2 |
NiS(0.28)@NF | 96 | 168.5 | 228.5 |
1 | 蒋博龙, 崔艳艳, 史顺杰, 等. 双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究[J]. 化学学报, 2022, 80(10): 1394-1400. |
JIANG Bolong, CUI Yanyan, SHI Shunjie, et al. Preparation of highly active transition bimetallic nitride NiMoN hydrogen evolution reaction(HER) catalyst and its performance study in seawater electrolysis[J]. Acta Chimica Sinica, 2022, 80(10): 1394-1400. | |
2 | HAO Jinbo, MA Yirong, JIA Baonan, et al. Defect engineering in two-dimensional Janus pentagonal noble metal sulfide MXY (M=Pd, Pt; X, Y—S, Se, Te; X≠Y) materials for highly efficient electrocatalytic hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 62: 462-472. |
3 | LIU Jinhua, ZHENG Jie, NIU Mang, et al. Dendritic boron and nitrogen doped high-entropy alloy porous carbon fibers for high-efficiency hydrogen evolution reaction[J]. iScience, 2024, 27(5): 109616. |
4 | SMITKOVA Miroslava, František JANÍČEK, RICCARDI Juri. Life cycle analysis of processes for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7844-7851. |
5 | POIMENIDIS Ioannis A, LYKAKI Maria, PAPAKOSTA Nikandra, et al. One-step electrodeposition of NiS heterostructures on nickel foam electrodes for hydrogen evolution reaction: On the impact of thiourea content[J]. Results in Chemistry, 2023, 6: 101216. |
6 | JIANG Bolong, LI Jiayou, CUI Yanyan, et al. Controlled growth of highly active NiMoN(100)-decorated porous N-doped carbon nanotubes on carbon cloth as efficient electrodes for alkaline media and seawater electrolysis[J]. Journal of Alloys and Compounds, 2023, 958: 170371. |
7 | LI Qin, ZHANG Qiong, YE Qianjin, et al. CoRu alloy synergistically co-catalyzes effective photocatalytic hydrogen evolution reaction of carbon nitride[J]. Applied Surface Science, 2024, 655: 159548. |
8 | KHAIRY Mohamed, MAHMOUD Khaled G. In-situ growth of nanostructured nickel sulphides on nickel foam platform for boosting the electrocatalytic activity of overall water splitting[J]. Journal of Alloys and Compounds, 2023, 935: 168056. |
9 | ZHANG Yuting, LI Binbin, ZHOU Anhui, et al. Fe-Ni-doped metal-organic framework derived CoSe2 as an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 65: 186-195. |
10 | KIM Hee Jin, KIM Ho Young, Jinwhan JOO, et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond[J]. Journal of Materials Chemistry A, 2022, 10(1): 50-88. |
11 | ZHAO Lin, LI Shubo, YANG Hongshun. Recent advances on research of electrolyzed water and its applications[J]. Current Opinion in Food Science, 2021, 41: 180-188. |
12 | YAO Dongxue, GU Lingling, ZUO Bin, et al. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting[J]. Nanoscale, 2021, 13(24): 10624-10648. |
13 | ZHU Jiawei, CHI Jingqi, CUI Tong, et al. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density[J]. Applied Catalysis B: Environmental, 2023, 328: 122487. |
14 | GUO Peixi, MUSHARAVATI Farayi, DASTJERDI Sajad Maleki. Design and transient-based analysis of a power to hydrogen (P2H2) system for an off-grid zero energy building with hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26515-26536. |
15 | BALAJI Rengarajan, KANNAN Balasingam Suresh, LAKSHMI Jothinathan, et al. An alternative approach to selective sea water oxidation for hydrogen production[J]. Electrochemistry Communications, 2009, 11(8): 1700-1702. |
16 | FAHAD ALDOSARI Obaid, HUSSAIN Ijaz, MALAIBARI Zuhair. Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment[J]. Journal of Energy Chemistry, 2023, 80: 658-688. |
17 | AMIKAM Gidon, NATIV Paz, GENDEL Youri. Chlorine-free alkaline seawater electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6504-6514. |
18 | ZENG Hongliang, JI Yuan, WEN Jinfeng, et al. Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook[J]. Chinese Chemical Letters, 2024: 109686. |
19 | JIANG Weiyan, GAO Zihan, SHEN Miao, et al. Molten salt N-modified Mo2CT x as a non-precious metal catalyst for efficient hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 57: 1-7. |
20 | ZHANG Wei, HAN Ning, LUO Jiangshui, et al. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting[J]. Small, 2022, 18(4): e2103561. |
21 | ZHAO Yufei, ZHANG Jinqiang, XIE Yuhan, et al. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting[J]. Nano Letters, 2021, 21(1): 823-832. |
22 | GOPI Sivalingam, SELVAMANI Vadivel, YUN Kyusik. MoS2 decoration followed by P inclusion over Ni-Co bimetallic metal-organic framework-derived heterostructures for water splitting[J]. Inorganic Chemistry, 2021, 60(14): 10772-10780. |
23 | SHUAI Chao, MO Zunli, NIU Xiaohui, et al. Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2020, 847: 156514. |
24 | 王岩, 张树聪, 汪兴坤, 等. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
WANG Yan, ZHANG Shucong, WANG Xingkun, et al. Research progress on transition metal-based catalysts for hydrogen evolution reaction via seawater electrolysis[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. | |
25 | YE Min, HU Feng, YU Deshuang, et al. Hierarchical FeC/MnO2 composite with in situ grown CNTs as an advanced trifunctional catalyst for water splitting and metal-air batteries[J]. Ceramics International, 2021, 47(13): 18424-18432. |
26 | LI Haoyi, CHEN Shuangming, ZHANG Ying, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting[J]. Nature Communications, 2018, 9(1): 2452. |
27 | LI Guoqing, ZHANG Du, YU Yifei, et al. Activating MoS2 for pH-universal hydrogen evolution catalysis[J]. Journal of the American Chemical Society, 2017, 139(45): 16194-16200. |
28 | YANG Yaqing, ZHANG Kai, LIN Huanlei, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catalysis, 2017, 7(4): 2357-2366. |
29 | ZHANG Ruizhi, ZHU Zhaoqiang, LIN Jiahao, et al. Hydrolysis assisted in situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting[J]. Electrochimica Acta, 2020, 332: 135534. |
30 | SU Hui, JIANG Jing, SONG Shaojia, et al. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting[J]. Chinese Journal of Catalysis, 2023, 44: 7-49. |
31 | LUO Xu, JI Pengxia, WANG Pengyan, et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/Ni x P y hollow heterostructure nanorods for efficient overall water splitting[J]. Advanced Energy Materials, 2020, 10(17): 1903891. |
32 | RILEY John F. Ferroan carrollites, cobaltian violarites, and other members of the linnaeite group: (Co, Ni, Fe, Cu)3S4 [J]. Mineralogical Magazine, 1980, 43(330): 733-739. |
33 | 董永利, 王佩, 梁雨梦, 等. Mo-Ni3S4复合材料的合成及其析氢性能[J]. 黑龙江科技大学学报, 2022, 32(4): 435-441. |
DONG Yongli, WANG Pei, LIANG Yumeng, et al. Synthesis and hydrogen evolution properties of Mo-Ni3S4 composites[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(4): 435-441. | |
34 | QIAO Bo, YAN Haiqing, WANG Chaonan, et al. Ni x S y /NF composites assembled by sulfidation of nickel foam (NF) for highly effective capture of iodine[J]. Chemical Engineering Journal, 2024, 479: 147864. |
[1] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
[2] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
[3] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
[4] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
[5] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
[6] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[7] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
[8] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
[9] | YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
[10] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
[11] | NI Peng, WANG Xianhong, HUANG Yuhan, MA Xiaotong, MA Zizhen, TAN Yan, ZHANG Huawei, LIU Ting. Latest progress and comparison of the injection demercuration application of activated carbon and magnetic metals adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524. |
[12] | HE Ran, LIANG Hong, HUANG Hong, YANG Youli, ZHENG Qiang, LI Xi. Preparation of acetylene black/Fe3O4 catalysed cathodic electrode and removal of 2,4,6-trichlorophenol by electro-Fenton oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 572-582. |
[13] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[14] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[15] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |