Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 1088-1099.DOI: 10.16085/j.issn.1000-6613.2024-0199
• Resources and environmental engineering • Previous Articles
YANG Qun1(), LI Hongyan1,2(
), ZHANG Feng1, MAO Libo3, CUI Jiali1, DONG Yinghong4, GUO Zirui1
Received:
2024-01-26
Revised:
2024-05-11
Online:
2025-03-10
Published:
2025-02-25
Contact:
LI Hongyan
杨群1(), 李红艳1,2(
), 张峰1, 毛立波3, 崔佳丽1, 董颖虹4, 郭紫瑞1
通讯作者:
李红艳
作者简介:
杨群(2001—),女,硕士研究生,研究方向为高级氧化水处理技术。E-mail:18402967529@163.com。
基金资助:
CLC Number:
YANG Qun, LI Hongyan, ZHANG Feng, MAO Libo, CUI Jiali, DONG Yinghong, GUO Zirui. Removal of gatifloxacin from water by cobalt-nitrogen co-doped mushroom stick biological carbon activated PMS[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1088-1099.
杨群, 李红艳, 张峰, 毛立波, 崔佳丽, 董颖虹, 郭紫瑞. 钴氮共掺杂废菌棒生物炭活化PMS去除水中加替沙星[J]. 化工进展, 2025, 44(2): 1088-1099.
样品 | 比表面积 /m²·g-1 | 平均孔径 /nm | 总孔容 /cm³·g-1 | 微孔 /cm³·g-1 |
---|---|---|---|---|
MS | 1.0721 | 33.2096 | 0.006035 | 0.000068 |
MSBC | 1.7246 | 42.4599 | 0.005975 | 0.000554 |
Co-N@MSBC | 280.7649 | 7.5762 | 0.155945 | 0.094107 |
样品 | 比表面积 /m²·g-1 | 平均孔径 /nm | 总孔容 /cm³·g-1 | 微孔 /cm³·g-1 |
---|---|---|---|---|
MS | 1.0721 | 33.2096 | 0.006035 | 0.000068 |
MSBC | 1.7246 | 42.4599 | 0.005975 | 0.000554 |
Co-N@MSBC | 280.7649 | 7.5762 | 0.155945 | 0.094107 |
1 | CHOONG Zheng-Yi, GASIM Mohamed Faisal, LIN Kun-Yi Andrew, et al. Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal[J]. Chemical Engineering Journal, 2023, 451: 138958. |
2 | WANG Kemeng, YANG Xiaohuan, PEI Yuansheng. Removal of gatifloxacin by activated peroxymonosulfate using co-pyrolysis materials of water treatment residuals and biomass: Nonradical-dominated mechanisms enhanced by adsorption[J]. Journal of Cleaner Production, 2023, 409: 137125. |
3 | 刘建华, 刘江涛, 邢献军, 等. 钴氮共掺杂生物质活性炭提升氧化还原催化剂性能[J]. 真空科学与技术学报, 2018, 38(11): 996-1002. |
LIU Jianhua, LIU Jiangtao, XING Xianjun, et al. Novel Co-N-C type non-precious metal catalyst fabricated from fresh kelp[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(11): 996-1002. | |
4 | LI Hongyan, CHAI Lina, CUI Jianguo, et al. Polypyrrole-modified mushroom residue activated carbon for sulfate and nitrate removal from water: Adsorption performance and mechanism[J]. Journal of Water Process Engineering, 2022, 49: 102916. |
5 | 董颖虹, 李红艳, 崔建国, 等. Cu-Mn-EFBC的制备及其对水中TCH的吸附机理研究[J]. 应用化工, 2023, 52(2): 426-432, 438. |
DONG Yinghong, LI Hongyan, CUI Jianguo, et al. Preparation of Cu-Mn-EFBC and its adsorption mechanism for TCH in water[J]. Applied Chemical Industry, 2023, 52(2): 426-432, 438. | |
6 | 陈一萍, 夏管商, 郑朝洪, 等. CNTs/PMS高级氧化体系去除水中的环丙沙星[J]. 化工进展, 2019, 38(4): 2037-2045. |
CHEN Yiping, XIA Guanshang, ZHENG Chaohong, et al. Degradation of ciprofloxacin by advanced oxidation process with carbon nanotubes/peroxymonosulfate[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2037-2045. | |
7 | XIAO Ruiyang, LUO Zonghao, WEI Zongsu, et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies[J]. Current Opinion in Chemical Engineering, 2018, 19: 51-58. |
8 | LI Hongchao, QIAN Jieshu, PAN Bingcai. N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants[J]. Chemical Engineering Journal. 2021, 403: 126395. |
9 | ANIPSITAKIS George P, DIONYSIOU Dionysios D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. |
10 | CHEN Xiao, Wen-Da OH, HU Zhongting, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B: Environmental, 2018, 225: 243-257. |
11 | LI Yangju, LI Jun, PAN Yuting, et al. Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 2020, 384: 123361. |
12 | 相里鹏, 崔佳丽, 张峰, 等. 磁性生物炭活化过硫酸盐去除水中罗丹明B[J]. 中国环境科学, 2023, 43(4): 1672-1687. |
XIANGLI Peng, CUI Jiali, ZHANG Feng, et al. Removal of Rhodamine B from aqueous solutions by magnetic biochar activated persulfate[J]. China Environmental Science, 2023, 43(4): 1672-1687. | |
13 | YANG Yi, BANERJEE Gourab, BRUDVIG Gary W, et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology, 2018, 52(10): 5911-5919. |
14 | 罗晗倬. 氮、钴共掺杂秸秆衍生生物炭活化过硫酸盐降解环丙沙星的研究[D]. 长沙: 湖南大学, 2021. |
LUO Hanzhuo. Lignocellulosic biomass derived nitrogen and cobalt co-doped biochar as highly efficient peroxymonosulfate activator for ciprofloxacin degradation[D]. Changsha: Hunan University, 2021. | |
15 | YIN Lichang, LIANG Ji, ZHOU Guangmin, et al. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations[J]. Nano Energy, 2016, 25: 203-210. |
16 | LU Xiaomei, QIN Jingzhong, XIAN Chensheng, et al. Cobalt nanoparticles supported on microporous nitrogen-doped carbon for an efficient catalytic transfer hydrogenation reaction between nitroarenes and N-heterocycles[J]. Catalysis Science & Technology, 2022, 12(18): 5549-5558. |
17 | XUE Yanjun, LU Shucao, LIANG Zhangqian, et al. Porous graphitic carbon nitride with nitrogen defects and cobalt-nitrogen (CoN) bonds for efficient broad spectrum (visible and near-infrared) photocatalytic H2 production[J]. Journal of Colloid and Interface Science, 2020, 561: 719-729. |
18 | TANG Yiwu, KANG Jin, WANG Min, et al. Catalytic degradation of oxytetracycline via FeVO4 nanorods activating PMS and the insights into the performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105864. |
19 | 姚彦红, 林波. 抗生素制药废水的污染特点及处理研究进展[J]. 江西化工, 2008, 24(4): 33-35. |
YAO Yanhong, LIN Bo. Study development of pollution chracteristics and treatment of antibiotics pharmaceutical wastewater[J]. Jiangxi Chemical Industry, 2008, 24(4): 33-35. | |
20 | 李加根. 不同光源条件下加替沙星的光化学氧化降解研究[D]. 金华: 浙江师范大学, 2022. |
LI Jiagen. Photochemical oxidative degradation of gatifloxacin under different light sources[D]. Jinhua: Zhejiang Normal University, 2022. | |
21 | LI Meng, LI Yanwen, YU Pengfei, et al. Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment[J]. Chemical Engineering Journal, 2022, 427: 130930. |
22 | LUO Junmei, BO Shufeng, QIN Yanan, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125063. |
23 | 白青青, 吴小宁, 王倩, 等. Fenton反应中拓展pH的研究进展[J]. 化学通报, 2018, 81(3): 217-222. |
BAI Qingqing, WU Xiaoning, WANG Qian, et al. Research progress in enlargement of pH in Fenton reaction[J]. Chemistry, 2018, 81(3): 217-222. | |
24 | XIANG Yujia, XU Zhangyi, WEI Yuyi, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138. |
25 | 熊明慧. 秸秆生物炭负载钴基催化剂活化过硫酸盐降解抗生素性能研究[D]. 武汉: 武汉轻工大学, 2022. |
XIONG Minghui. Straw biochar supported cobalt-based catalysts for antibiotics degradation via peroxymonosulfate activation[D]. Wuhan: Wuhan Polytechnic University, 2022. | |
26 | 伊玉, 李洁冰, 王倩, 等. 无机盐离子对CoFe2O4/GO催化PMS氧化降解酸性橙Ⅱ的影响[J]. 广东化工, 2014, 41(13): 10-11. |
YI Yu, LI Jiebing, WANG Qian, et al. The effects of inorganic ions on the CoFe2O4/GO catalytic oxidation orange Ⅱ by PMS[J]. Guangdong Chemical Industry, 2014, 41(13): 10-11. | |
27 | CHEN Liwei, DING Dahu, LIU Chao, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284. |
28 | YOU Yang, SHI Zekai, LI Yunhe, et al. Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride[J]. Separation and Purification Technology, 2021, 272: 118889. |
29 | ZHU Enhao, HONG Xiaoting, YE Zhuoliang, et al. Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes[J]. Separation and Purification Technology, 2019, 215: 454-462. |
30 | KOHANTORABI Mona, MOUSSAVI Gholamreza, GIANNAKIS Stefanos. A review of the innovations in metal and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957. |
31 | WANG Yanbin, LIU Man, ZHAO Xu, et al. Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon[J]. Carbon, 2018, 135: 238-247. |
32 | 焦路畅, 卫月星, 张禹洵, 等. 煤气化细渣负载CoO活化PMS高效降解双酚A[J]. 化工进展, 2023, 42(11): 5993-6004. |
JIAO Luchang, WEI Yuexing, ZHANG Yuxun, et al. Coal gasification fine slag supported CoO catalyst for the efficient degradation of bisphenol A by activating peroxymonosulfate process[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5993-6004. | |
33 | YUN Eun-Tae, LEE Jeong Hoon, KIM Jaesung, et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process: Singlet oxygenation versus mediated electron transfer[J]. Environmental Science & Technology, 2018, 52(12): 7032-7042. |
34 | YOU Junjie, LI Junyi, ZHANG Heng, et al. Removal of bisphenol A via peroxymonosulfate activation over graphite carbon nitride supported NiC x nanoclusters catalyst: Synergistic oxidation of high-valent nickel-oxo species and singlet oxygen[J]. Journal of Hazardous Materials, 2022, 445: 130440. |
35 | 孙浩. 氮改性生物炭活化过一硫酸盐去除水体中2,4-二氯酚的性能与机理研究[D]. 长春: 吉林大学, 2022. |
SUN Hao. Performance and mechanism of removal of 2,4-dichlorophenol from water by activated peroxymonosulfate with nitrogen-modified biochar[D]. Changchun: Jilin University, 2022. | |
36 | QIU Xiaojie, ZHAO Yingxin, LI Chenxi, et al. Different peroxymonosulfate activation and utilization pathways of typical cobalt oxides, cobalt-carbon and carbonaceous composites derived from metal-organic frameworks for pollutant oxidation in wastewater[J]. Chemical Engineering Journal, 2023, 475: 146234. |
37 | 董康妮, 谢更新, 晏铭, 等. 磺化生物炭活化过硫酸盐去除水中盐酸四环素[J]. 中国环境科学, 2022, 42(8): 3650-3657. |
DONG Kangni, XIE Gengxin, YAN Ming, et al. Removal of tetracycline hydrochloride from aqueous solutions by sulfonated biochar-activated persulfate[J]. China Environmental Science, 2022, 42(8): 3650-3657. | |
38 | ZHOU Yang, JIANG Jin, GAO Yuan, et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950. |
39 | LIANG Song, NIU Huaiyuan, GUO Hai, et al. Incorporating Fe3C into B,N co-doped CNTs: Non-radical-dominated peroxymonosulfate catalytic activation mechanism[J]. Chemical Engineering Journal, 2021, 405: 126686. |
[1] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[2] | ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, DONG Lichun. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. |
[3] | ZHANG Xi, LI Haoxin, ZHANG Tianyang, LI Zifu, SUN Wenjun, AO Xiuwei. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4587-4600. |
[4] | YUAN Mingzhe, QIN Anrui, ZHOU Guimin, CHEN Qiulin, YUAN Yajie, YAO Yaochun, LI Yin. Process and application study on the preparation of battery-grade FePO4 by high-temperature activated leaching-precipitation of iron phosphate slag [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4726-4737. |
[5] | JIN Lijun, LIU Zhengzheng, LI Yang, YANG He, HU Haoquan. Strategy and its application to improve tar yield by coupling catalytic activation of H-rich small molecule with coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3613-3619. |
[6] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[7] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
[8] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
[9] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[10] | ZHOU Qiang, YIN Chengyang, LIU Baijun, ZHAO Zhen. Research progress on the performance and mechanism of H2-assisted HC-SCR denitration [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6140-6154. |
[11] | ZHOU Tianhong, WANG Jinyi, SU Xu, ZENG Honglin, ZHAI Tianjiao. Research progress on advanced oxidation degradation of organic pollutants in water based on spinel type CoFe2O4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6412-6427. |
[12] | NIU Qianjin, LI Chunguang, LIU Zhenzhong, LIU Longcheng. Effect of Ca(OH)2 grouting on the property of alkali-activated solidified uranium tailing slags [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6458-6467. |
[13] | TAN Tianbing, QIN Zhifeng, LI Naizhen, CHANG Liping, WU Mengmeng, YU Feng, WU Qiongxiao, XIAN Yanli, JING Jianning. Deactivation mechanism of coke oven gas prehydrogenation desulfurization catalyst for industrial application [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5543-5554. |
[14] | ZHENG Ying, LI Xun, LI Zebing, GAO Zhe, ZHAO Chun. Research progress in enhancing the efficiency of piezoelectric catalytic degradation of organic pollutants from water [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5723-5733. |
[15] | SUN Jin, CHEN Xiaozhen, LIU Mingrui, LIU Li, NIU Shikun, GUO Rong. Deactivation mechanism of sodium poisoning hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 407-413. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |