Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 773-787.DOI: 10.16085/j.issn.1000-6613.2024-0129
• Industrial catalysis • Previous Articles Next Articles
ZHANG Qi(), WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun(
), MEN Zhuowu(
)
Received:
2024-01-17
Revised:
2024-02-22
Online:
2025-03-10
Published:
2025-02-25
Contact:
LYU Yijun, MEN Zhuowu
张琪(), 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军(
), 门卓武(
)
通讯作者:
吕毅军,门卓武
作者简介:
张琪(1986—),女,硕士,高级工程师,研究方向为煤间接液化。E-mail:qi.zhang.as@chnenergy.com.cn。
基金资助:
CLC Number:
ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787.
张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787.
催化剂 | GHSV① | XCO/% | SHC/% | S总醇/% | SCO2/% | (甲醇/总醇)/% | (乙醇/总醇)/% | (C3+醇/总醇)/% |
---|---|---|---|---|---|---|---|---|
10Co/Al2O3 | 28800 | 36.6 | 97.7 | 1.9 | 0.4 | 2.6 | 1.4 | 95.0 |
5Cu15Co/Al2O3 | 4500 | 30.9 | 88.5 | 10.3 | 1.2 | 43.1 | 37.1 | 19.87 |
10Cu10Co/Al2O3 | 3600 | 16.5 | 82.6 | 17.3 | 0.3 | 35.7 | 43.7 | 20.5 |
5Co15Cu/Al2O3 | 1800 | 23.2 | 75.6 | 23.3 | 1.1 | 20.7 | 34.7 | 44.5 |
2Co18Cu/Al2O3 | 1800 | 12.7 | 77.7 | 20.9 | 1.3 | 58.5. | 17.4 | 24.1 |
20Cu/Al2O3 | 900 | 25.2 | 10.9 | 85.8 | 3.3 | 99.5 | 0.2 | 0.3 |
催化剂 | GHSV① | XCO/% | SHC/% | S总醇/% | SCO2/% | (甲醇/总醇)/% | (乙醇/总醇)/% | (C3+醇/总醇)/% |
---|---|---|---|---|---|---|---|---|
10Co/Al2O3 | 28800 | 36.6 | 97.7 | 1.9 | 0.4 | 2.6 | 1.4 | 95.0 |
5Cu15Co/Al2O3 | 4500 | 30.9 | 88.5 | 10.3 | 1.2 | 43.1 | 37.1 | 19.87 |
10Cu10Co/Al2O3 | 3600 | 16.5 | 82.6 | 17.3 | 0.3 | 35.7 | 43.7 | 20.5 |
5Co15Cu/Al2O3 | 1800 | 23.2 | 75.6 | 23.3 | 1.1 | 20.7 | 34.7 | 44.5 |
2Co18Cu/Al2O3 | 1800 | 12.7 | 77.7 | 20.9 | 1.3 | 58.5. | 17.4 | 24.1 |
20Cu/Al2O3 | 900 | 25.2 | 10.9 | 85.8 | 3.3 | 99.5 | 0.2 | 0.3 |
序号 | 催化剂 | T/K | P/MPa | GHSV②/h-1 | H2/CO | XCO/% | SHA/% | SHC/% | SCO2/% |
---|---|---|---|---|---|---|---|---|---|
1 | (Cu1Co2)2Al-LDHs | 523 | 3 | 3900② | 2 | 52 | 46 | 51 | 2 |
2 | (Cu1Co2)2Al/CNTs | 503 | 3 | 3900② | 2 | 45 | 65 | 34 | 1 |
3 | Co3Cu/CNTs-h | 573 | 5 | 7200② | 1 | 39 | 58 | 21 | 5 |
4 | K-CoMo/(Co/CNTs-h) | 593 | 5 | 10000② | 2 | 57 | 46 | 13 | 40 |
5 | CoCu/GE-LFO① | 573 | 3 | 3900② | 2 | 50 | 57 | 35 | 8 |
6 | CoMo/AC | 523 | 7.5 | 2000 | 1 | 42 | 66 | 16 | 2 |
7 | CoCuMn/AC | 493 | 3 | 500 | 2 | 58 | 39 | 55 | 5 |
8 | CoCu/LaFeO3 | 573 | 3 | 3900② | 2 | 76 | 29 | 39 | 26 |
9 | Co/MnO x | 503 | 3 | 4500② | 2 | 50 | 11 | 52 | 5 |
10 | 1Zr10Cu10Co/Al2O3 | 523 | 2 | 3600 | 2 | — | 18 | 80 | 2 |
11 | Co0-Co δ+-LaAlO3/ZrO2 | 533 | 3 | 3900② | 2 | 45 | 17 | 72 | 11 |
序号 | 催化剂 | T/K | P/MPa | GHSV②/h-1 | H2/CO | XCO/% | SHA/% | SHC/% | SCO2/% |
---|---|---|---|---|---|---|---|---|---|
1 | (Cu1Co2)2Al-LDHs | 523 | 3 | 3900② | 2 | 52 | 46 | 51 | 2 |
2 | (Cu1Co2)2Al/CNTs | 503 | 3 | 3900② | 2 | 45 | 65 | 34 | 1 |
3 | Co3Cu/CNTs-h | 573 | 5 | 7200② | 1 | 39 | 58 | 21 | 5 |
4 | K-CoMo/(Co/CNTs-h) | 593 | 5 | 10000② | 2 | 57 | 46 | 13 | 40 |
5 | CoCu/GE-LFO① | 573 | 3 | 3900② | 2 | 50 | 57 | 35 | 8 |
6 | CoMo/AC | 523 | 7.5 | 2000 | 1 | 42 | 66 | 16 | 2 |
7 | CoCuMn/AC | 493 | 3 | 500 | 2 | 58 | 39 | 55 | 5 |
8 | CoCu/LaFeO3 | 573 | 3 | 3900② | 2 | 76 | 29 | 39 | 26 |
9 | Co/MnO x | 503 | 3 | 4500② | 2 | 50 | 11 | 52 | 5 |
10 | 1Zr10Cu10Co/Al2O3 | 523 | 2 | 3600 | 2 | — | 18 | 80 | 2 |
11 | Co0-Co δ+-LaAlO3/ZrO2 | 533 | 3 | 3900② | 2 | 45 | 17 | 72 | 11 |
1 | Ho Ting LUK, MONDELLI Cecilia, FERRÉ Daniel Curulla, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
2 | 王新略, 穆晓亮, 韩念琛, 等. 制备方法对CuFe负载介孔SiO2催化剂合成气制低碳醇催化性能的影响[J]. 天然气化工(C1化学与化工), 2022, 47(4): 57-65. |
WANG Xinlve, MU Xiaoliang, HAN Nianchen, et al. Effect of preparation methods on catalytic performance of CuFe supported mesoporous SiO2 catalyst for syngas to higher alcohols[J]. Natural Gas Chemical Industry, 2022, 47(4): 57-65. | |
3 | ANDERSSON Robert, BOUTONNET Magali, Sven JÄRÅS. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas[J]. Journal of Chromatography A, 2012, 1247: 134-145. |
4 | AO Min, PHAM Gia Hung, SUNARSO Jaka, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
5 | XIONG Haifeng, JEWELL Linda L, COVILLE Neil J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catalysis, 2015, 5(4): 2640-2658. |
6 | 肖康, 鲍正洪, 齐行振, 等. 合成气制混合醇双功能催化研究进展[J]. 催化学报, 2013, 34(1): 116-129. |
XIAO Kang, BAO Zhenghong, QI Xingzhen, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chinese Journal of Catalysis, 2013, 34(1): 116-129. | |
7 | GUPTA Mayank, SMITH Miranda L, SPIVEY James J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catalysis, 2011, 1(6): 641-656. |
8 | ZAMAN Sharif, SMITH Kevin J. A review of molybdenum catalysts for synthesis gas conversion to alcohols: Catalysts, mechanisms and kinetics[J]. Catalysis Reviews, 2012, 54(1): 41-132. |
9 | LI Zhuoshi, HU Zhiwei, ZENG Zhuang, et al. Lamellar-structured silicate derived highly dispersed CoCu catalyst for higher alcohol synthesis from syngas[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 6859-6871. |
10 | 房克功, 黄潮, 祝灿. 一种用于合成气制高级醇的CuCo基复合催化剂及其制备方法和应用: CN112495385A[P]. 2021-03-16. |
FANG Kegong, HUANG Chao, ZHU Can. CuCo-based composite catalyst for preparing higher alcohols from synthesis gas as well as preparation method and application of CuCo-based composite catalyst: CN112495385A[P]. 2021-03-16. | |
11 | 房克功, 张明伟, 穆晓亮, 等. 一种合成气制乙醇、丙醇的催化剂及其制备方法和应用: CN114570423A[P]. 2022-06-03. |
FANG Kegong, ZHANG Mingwei, MU Xiaoliang, et al. Catalyst for preparing ethanol and propanol from synthesis gas as well as preparation method and application of catalyst: CN114570423A[P]. 2022-06-03. | |
12 | NING Shangbo, Honghui OU, LI Yaguang, et al. Co0-Co δ + interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins[J]. Angewandte Chemie (International Ed in English), 2023, 62(23): e202302253. |
13 | 孔劼琛, 刘媛, 高志贤, 等. Co基催化剂用于低碳醇合成反应研究进展[J]. 现代化工, 2019, 39(6): 26-30, 32. |
KONG Jiechen, LIU Yuan, GAO Zhixian, et al. Research progress on Co-based catalysts for low-carbon alcohol synthesis[J]. Modern Chemical Industry, 2019, 39(6): 26-30, 32. | |
14 | LU Yongwu, CAO Baobao, YU Fei, et al. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014, 6(2): 473-478. |
15 | XIANG Yizhi, BARBOSA Roland, LI Xiaonian, et al. Ternary cobalt-copper-niobium catalysts for the selective CO hydrogenation to higher alcohols[J]. ACS Catalysis, 2015, 5(5): 2929-2934. |
16 | HUANG Yulin, DENG Weihua, GUO Enruo, et al. Mesoporous silica nanoparticle-stabilized and manganese-modified rhodium nanoparticles as catalysts for highly selective synthesis of ethanol and acetaldehyde from syngas[J]. ChemCatChem, 2012, 4(5): 674-680. |
17 | Päivi MÄKI-ARVELA, Atte AHO, SIMAKOVA Irina, et al. Sustainable aviation fuel from syngas through higher alcohols[J]. ChemCatChem, 2022, 14(23): e202201005. |
18 | BORSHCH Vyacheslav N, ZHUK Svetlana YA, PUGACHEVA Elena V, et al. Co-Cu-La catalysts for selective CO2 hydrogenation to higher hydrocarbons[J]. Mendeleev Communications, 2023, 33(1): 55-57. |
19 | 宁珣. Co基双金属催化剂催化合成气转化制备乙醇和高级醇[D]. 北京: 北京化工大学, 2016. |
NING Xun. Co-based bimetallic catalyst for synthesis of ethanol and higher alcohols from syngas[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
20 | GUAN Zun, ZHAO Wantong, LI Debao, et al. The new role of pivotal intermediate CH x in CO activation and conversion to hydrocarbons on the transition metal catalysts[J]. Fuel, 2023, 331: 125788 |
21 | ZHANG Shunan, HUANG Chaojie, SHAO Zilong, et al. Revealing and regulating the complex reaction mechanism of CO2 hydrogenation to higher alcohols on multifunctional tandem catalysts[J]. ACS Catalysis, 2023, 13(5): 3055-3065. |
22 | OJEDA Manuel, NABAR Rahul, NILEKAR Anand U, et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2010, 272(2): 287-297. |
23 | MEDFORD Andrew J, LAUSCHE Adam C, Frank ABILD-PEDERSEN, et al. Activity and selectivity trends in synthesis gas conversion to higher alcohols[J]. Topics in Catalysis, 2014, 57(1): 135-142. |
24 | CHENG Jun, HU P, ELLIS Peter, et al. Density functional theory study of iron and cobalt carbides for Fischer-Tropsch synthesis[J]. The Journal of Physical Chemistry C, 2010, 114(2): 1085-1093. |
25 | 刘红霞. F-T合成反应中Co催化剂晶面结构对表面C反应机理和碳链增长机理影响的理论研究[D]. 太原: 太原理工大学, 2018. |
LIU Hongxia. Theoretical studies on the effect of crystal structure of Co catalyst on surface C reaction mechanism and carbon chain growth mechanism in F-T synthesis[D].Taiyuan: Taiyuan University of Technology, 2018. | |
26 | PEI Yanpeng, LI Jinxun, ZHAO Yonghui, et al. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface[J]. ACS catalysis, 2015, 5(6): 3620-3624. |
27 | LEBARBIER Vanessa M, MEI Donghai, KIM Do Heui, et al. Effects of La2O3 on the mixed higher alcohols synthesis from syngas over co catalysts: A combined theoretical and experimental study[J]. The Journal of Physical Chemistry C, 2011, 115(35): 17440-17451. |
28 | ZHAO Ziang, LU Wei, YANG Ruoou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2018, 8(1): 228-241. |
29 | SU Junjie, ZHANG Zhengpai, FU Donglong, et al. Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: Dynamic structure and the role of Cu[J]. Journal of Catalysis, 2016, 336: 94-106. |
30 | 苏俊杰. 钴基催化剂用于合成气直接制备低碳醇的构-效关系研究[D]. 上海: 华东理工大学, 2016. |
SU Junjie. Structure-performance relationship of Co-based catalysts for lower carbon alcohol synthesis directly from syngas[D]. Shanghai: East China University of Science and Technology, 2016. | |
31 | SMITH Miranda L, CAMPOS Andrew, SPIVEY James J. Reduction processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts[J]. Catalysis Today, 2012, 182(1): 60-66. |
32 | SMITH Miranda L, KUMAR Nitin, SPIVEY James J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS[J]. The Journal of Physical Chemistry C, 2012, 116(14): 7931-7939. |
33 | Dong LYU, ZHU Yan, SUN Yuhan. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO[J]. Chinese Journal of Catalysis, 2013, 34(11): 1998-2003. |
34 | SUN Kai, WU Yingquan, TAN Minghui, et al. Ethanol and higher alcohols synthesis from syngas over CuCoM (M=Fe, Cr, Ga and Al) nanoplates derived from hydrotalcite-like precursors[J]. ChemCatChem, 2019, 11(11): 2695-2706. |
35 | YU Yingzhe, ZHANG Jie, SUN Xuanyu, et al. Carbon chain growth mechanism of higher alcohols synthesis from syngas on CoCu(100): A combined DFT and kMC study[J]. Surface Science, 2020, 691: 121513. |
36 | WANG Jingbo, ZHANG Xiurong, SUN Qiang, et al. Chain growth mechanism on bimetallic surfaces for higher alcohol synthesis from syngas[J]. Catalysis Communications, 2015, 61: 57-61. |
37 | CAO Ang, SCHUMANN Julia, WANG Tao, et al. Mechanistic insights into the synthesis of higher alcohols from syngas on CuCo alloys[J]. ACS Catalysis, 2018, 8(11): 10148-10155. |
38 | SONG Pengfei, FANG Yuzhen, LIU Xuemei, et al. LaAlO3-tailored active pairs of Co0-Co δ + supported on ZrO2 for higher alcohol synthesis from syngas[J]. Industrial & Engineering Chemistry Research, 2023, 62(41): 16696-16706. |
39 | CHEN Tianyuan, SU Junjie, ZHANG Zhengpai, et al. Structure evolution of Co-CoO x interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catalysis, 2018, 8(9): 8606-8617. |
40 | LIU Bing, OUYANG Bi, ZHANG Yuhua, et al. Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO2 hydrogenation for higher alcohol synthesis[J]. Journal of Catalysis, 2018, 366: 91-97. |
41 | SONG Pengfei, WANG Jiaming, WANG Xitao, et al. The active pairs of Co-Co2C adjusted by La-doped CaTiO3 with perovskite phase for higher alcohol synthesis from syngas[J]. Chemical Engineering Journal, 2022, 439: 135635. |
42 | GUO Shaoxia, LIU Guilong, ZHANG Yuan, et al. Oxygen vacancies boosted Co-Co2C catalysts for higher alcohols synthesis from syngas[J]. Applied Surface Science, 2022, 576: 151846. |
43 | LIU Sihang, YANG Chengsheng, ZHA Shenjun, et al. Moderate surface segregation promotes selective ethanol production in CO2 hydrogenation reaction over CoCu catalysts[J]. Angewandte Chemie (International Ed in English), 2022, 61(2): e202109027. |
44 | Christoph GÖBEL, SCHMIDT Stefan, FROESE Christian, et al. Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure[J]. Journal of Catalysis, 2020, 383: 33-41. |
45 | JESKE Kai, Thorsten RÖSLER, BELLEFLAMME Maurice, et al. Direct conversion of syngas to higher alcohols via tandem integration of Fischer-Tropsch synthesis and reductive hydroformylation[J]. Angewandte Chemie (International Ed in English), 2022, 61(31): e202201004. |
46 | 高娃. 铜基催化剂双活性位结构调控及其协同催化作用机制研究[D]. 北京: 北京化工大学, 2016. |
GAO Wa. Modulation of double active sites in Cu-based catalysts and corresponding cooperative catalysis mechanism[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
47 | LIU Jianguo, DING Mingyue, WANG Tiejun, et al. Promoting effect of cobalt addition on higher alcohols synthesis over copper-based catalysts[J]. Advanced Materials Research, 2012, 550/551/552/553: 270-275. |
48 | XU Huiyuan, CHU Wei, SHI Limin, et al. Effects of glow discharge plasma on Cu-Co-Al-based supported catalysts for higher alcohol synthesis[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(2): 243-247. |
49 | XU Huiyuan, CHU Wei, DENG Siyu. Preparation of copper-cobalt-silicon catalysts for higher alcohol synthesis by glow discharge plasma[J]. Acta Physico-Chimica Sinica, 2010, 26(2): 345-349. |
50 | 刘瑞琴, 孟凡会, 王立言, 等. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
LIU Ruiqin, MENG Fanhui, WANG Liyan, et al. Preparation of ordered mesoporous CuCoZr catalyst and its catalytic performance for syngas to ethanol and higher alcohols[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5870-5878. | |
51 | SUN Kai, GAO Xiaofeng, BAI Yunxing, et al. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catalysis Science & Technology, 2018, 8(15): 3936-3947. |
52 | SUN Kai, TAN Minghui, BAI Yunxing, et al. Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols[J]. Journal of Catalysis, 2019, 387: 1-16. |
53 | LI Zhuoshi, ZENG Zhuang, YAO Dawei, et al. High-performance CoCu catalyst encapsulated in KIT-6 for higher alcohol synthesis from syngas[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 200-209. |
54 | LI Zhuoshi, LUO Guangyuan, CHEN Tao, et al. Bimetallic CoCu catalyst derived from in situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas[J]. Fuel, 2020, 278: 118292. |
55 | DOKUCHITS Eugene V, KARDASH Tatyana Yu, LARINA Tatyana V, et al. LaCo1 -x-y Cu x Ti y O3/KIT-6 perovskites: Synthesis and catalytic behavior in syngas conversion to higher alcohols[J]. Dalton Transactions, 2023, 52(2): 409-420. |
56 | JIAO Guiping, DING Yunjie, ZHU Hejun, et al. Effect of La2O3 doping on syntheses of C1-C18 mixed linear α-alcohols from syngas over the Co/AC catalysts[J]. Applied Catalysis A: General, 2009, 364(1/2): 137-142. |
57 | ZHU Xiudong, SHANG Yunshan, CHEN Jingyun, et al. Insight into the role of lanthanum-modified Cu Co based catalyst for higher alcohol synthesis from syngas[J]. Fuel Processing Technology, 2022, 235: 107378. |
58 | ZHAO Lu, DUAN Jiani, ZHANG Qiulan, et al. Preparation, structural characteristics, and catalytic performance of Cu-Co alloy supported on Mn-Al oxide for higher alcohol synthesis via syngas[J]. Industrial & Engineering Chemistry Research, 2018, 57(44): 14957-14966. |
59 | WANG Jingjuan, CHERNAVSKII Petr A, KHODAKOV Andrei Y, et al. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Journal of Catalysis, 2012, 286: 51-61. |
60 | SU Junjie, MAO Wei, XU Xinchao, et al. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts[J]. AIChE Journal, 2014, 60(5): 1797-1809. |
61 | PRIETO Gonzalo, BEIJER Steven, SMITH Miranda L, et al. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angewandte Chemie (International Ed in English), 2014, 53(25): 6397-6401. |
62 | XIANG Yizhi, CHITRY Véronique, LIDDICOAT Peter, et al. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. Journal of the American Chemical Society, 2013, 135(19): 7114-7117. |
63 | PEI Yanpeng, JIAN Siping, CHEN Yuanyuan, et al. Synthesis of higher alcohols by the Fischer-Tropsch reaction over activated carbon supported CoCuMn catalysts[J]. RSC Advances, 2015, 5(93): 76330-76336. |
64 | WANG Peng, ZHANG Junfeng, BAI Yunxing, et al. Ternary copper-cobalt-cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation[J]. Applied Catalysis A: General, 2016, 514: 14-23. |
65 | WANG Peng, BAI Yunxing, XIAO He, et al. Effect of the dimensions of carbon nanotube channels on coppercobalt-cerium catalysts for higher alcohols synthesis[J]. Catalysis Communications, 2016, 75: 92-97. |
66 | 罗文昭. 合成气制低碳醇CuCo基催化剂的制备、表征及其催化性能的研究[D]. 北京: 北京化工大学, 2022. |
LUO Wenzhao. Preparation, characterization and catalytic performance of CuCo based catalysts for synthesis of low carbon alcohols from syngas[D].Beijing: Beijing University of Chemical Technology, 2022. | |
67 | TIENT-HAO N, ZAHEDI-NIAKI Hassan M, ALAMDARI H, et al. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J]. Journal of Catalysis, 2007, 245(2): 348-357. |
68 | TIEN-THAO N, ALAMDARI H, ZAHEDI-NIAKI M H, et al. LaCo1 -x Cu x O3 -δ perovskite catalysts for higher alcohol synthesis[J]. Applied Catalysis A: General, 2006, 311: 204-212. |
69 | Nguyen TIEN-THAO, ALAMDARI Houshang, KALIAGUINE Serge. Characterization and reactivity of nanoscale La(Co,Cu)O3 perovskite catalyst precursors for CO hydrogenation[J]. Journal of Solid State Chemistry France, 2008, 181(8): 2006-2019. |
70 | Nguyen TIEN-THAO. Synthesis of Co-Cu/La2O3 pervoskites for hydrogenation of CO[J]. Asian Journal of Chemistry, 2013, 25(14): 8082-8086. |
71 | Nguyen TIEN-THAO, ZAHEDI-NIAKI Hassan M, ALAMDARI Houshang, et al. Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors[J]. Appl. Catal, A, 2007, 326: 152-163. |
72 | COSULTCHI Ana, Miguel PÉREZ-LUNA, MORALES-SERNA José Antonio, et al. Characterization of modified Fischer-Tropsch catalysts promoted with alkaline metals for higher alcohol synthesis[J]. Catalysis Letters, 2012, 142(3): 368-377. |
73 | AO Min, PHAM Gia Hung, SUNARSO Jaka, et al. Effects of alkali promoters on tri-metallic Co-Ni-Cu-based perovskite catalyst for higher alcohol synthesis from syngas[J]. Catalysis Today, 2020, 355: 26-34. |
74 | GE Yuzhen, ZOU Tangsheng, MARTÍN Antonio J, et al. ZrO2-promoted Cu-Co, Cu-Fe and Co-Fe catalysts for higher alcohol synthesis[J]. ACS Catalysis, 2023, 13(15): 9946-9959. |
75 | 郭磊, 刘培功, 龚坤, 等. 金属助剂对合成气制高碳醇Co/AC催化剂性能影响[J]. 燃料化学学报(中英文), 2023(11): 1663-1672. |
GUO Lei, LIU Peigong, GONG Kun, et al. Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2023(11): 1663-1672. | |
76 | HUANG Chao, ZHU Can, ZHANG Mingwei, et al. Design of efficient ZnO/ZrO2 modified CuCoAl catalysts for boosting higher alcohol synthesis in syngas conversion[J]. Applied Catalysis B: Environmental, 2022, 300: 120739. |
77 | LI Fang, MA Hongfang, ZHANG Haitao, et al. In situ-DRIFTS study of Rh promoted CuCo/Al2O3 for ethanol synthesis via CO hydrogenation[J]. Bulletin of the Korean Chemical Society, 2014, 35(9): 2726-2732. |
78 | QIN Tingting, LIN Tiejun, QI Xingzhen, et al. Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion[J]. Applied Catalysis B: Environmental, 2021, 285: 119840. |
79 | ZENG Zhuang, LI Zhuoshi, KANG Li, et al. A monodisperse ε'-(Co x Fe1 -x )2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols[J]. ACS Catalysis, 2022, 12(10): 6016-6028. |
80 | AN Zhe, NING Xun, HE Jing. Ga-promoted CO insertion and C-C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas[J]. Journal of Catalysis, 2017, 356: 157-164. |
81 | GAO Shan, LI Xiaoyun, LI Yuyang, et al. Effects of gallium as an additive on activated carbon-supported cobalt catalysts for the synthesis of higher alcohols from syngas[J]. Fuel, 2018, 230: 194-201. |
82 | 郭海. 基于层状前体的CoGa催化剂分散稳定性及合成气转化性能研究[D]. 北京: 北京化工大学, 2019. |
GUO Hai. Study on dispersion stability and synthesis gas conversion performance of CoGa catalyst based on layered precursor[D].Beijing: Beijing University of Chemical Technology, 2019. | |
83 | AN Kang, ZHANG Siran, WANG Hong, et al. Co0-Co δ + active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis[J]. Chemical Engineering Journal, 2022, 433: 134606. |
84 | WANG Zi, SPIVEY James J. Effect of ZrO2, Al2O3 and La2O3 on cobalt-copper catalysts for higher alcohols synthesis[J]. Applied Catalysis A: General, 2015, 507: 75-81. |
85 | LIU Guilong, NIU T, CAO Ang, et al. The deactivation of Cu-Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas[J]. Fuel, 2016, 176: 1-10. |
86 | LI Ningyan, SONG Pengfei, WANG Xitao, et al. Constructing the active pairs of Co0-Co2+ via surface solid reaction on TiO2 with the additives of La and Al for higher alcohols synthesis[J]. Applied Surface Science, 2023, 627: 157330. |
87 | PEI Yanpeng, DING Yunjie, ZHU Hejun, et al. One-step production of C1-C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2 [J]. Chinese Journal of Catalysis, 2015, 36(3): 355-361. |
88 | SUBRAMANIAN Nachal D, KUMAR Challa S S R, WATANABE Kazuo, et al. A DRIFTS study of CO adsorption and hydrogenation on Cu-based core-shell nanoparticles[J]. Catalysis Science & Technology, 2012, 2(3): 621-631. |
89 | YANG Yanzhang, QI Xingzhen, WANG Xinxing, et al. Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas[J]. Catalysis Today, 2016, 270: 101-107. |
90 | CARENCO Sophie, TUXEN Anders, CHINTAPALLI Mahati, et al. Dealloying of cobalt from CuCo nanoparticles under syngas exposure[J]. The Journal of Physical Chemistry C, 2013, 117(12): 6259-6266. |
91 | LIU Guilong, NIU Ting, PAN Dongming, et al. Preparation of bimetal Cu-Co nanoparticles supported on meso-macroporous SiO2 and their application to higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2014, 483: 10-18. |
92 | CAO Ang, LIU Guilong, WANG Lianfang, et al. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas[J]. Journal of Materials Science, 2016, 51(11): 5216-5231. |
93 | NIU T, LIU G-L, CHEN Y, et al. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas[J]. Applied Surface Science, 2016, 364: 388-399. |
94 | CAO Ang, LIU Guilong, YUE Yizhi, et al. Nanoparticles of Cu-Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas[J]. RSC Advances, 2015, 5(72): 58804-58812. |
95 | WANG Jingjuan, CHERNAVSKII Petr A, WANG Ye, et al. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103: 1111-1122. |
96 | LEE Jin Hee, Hariprasad REDDY K, JUNG Jae Sun, et al. Role of support on higher alcohol synthesis from syngas[J]. Applied Catalysis A: General, 2014, 480: 128-133. |
97 | SHI Limin, CHU Wei, DENG Siyu. Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol synthesis[J]. Journal of Natural Gas Chemistry, 2011, 20(1): 48-52. |
98 | WANG Lianfang, CAO Ang, LIU Guilong, et al. Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas[J]. Applied Surface Science, 2016, 360: 77-85. |
99 | YANG Yifei, JIA Litao, HOU Bo, et al. Incorporation of highly dispersed cobalt nanoparticles into the ordered mesoporous carbon for CO hydrogenation[J]. Catalysis Letters, 2014, 144(1): 133-141. |
100 | FAN Siqi, WANG Yue, LI Zhuoshi, et al. Carbon layer-coated ordered mesoporous silica supported Co-based catalysts for higher alcohol synthesis: The role of carbon source[J]. Chinese Chemical Letters, 2020, 31(2): 525-529. |
101 | 高娃, 赵宇飞, 陈昊然, 等. 核壳结构Cu@(CuCo-合金)/Al2O3催化剂的制备及其催化转化合成气制备高级醇性能研究[C]//中国化学会第九届全国无机化学学术会议论文集——L能源材料化学. 南昌, 2015: 33-34. |
GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[C]// The 9th national conference on inorganic chemistry of the Chinese chemical society——L energy material chemistry. Nanchang, 2015: 33-34. | |
102 | GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
103 | LIAO Peiyi, ZHANG Chen, ZHANG Lijun, et al. Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursors[J]. Catalysis Today, 2018, 311: 56-64. |
104 | FENG Wei, WANG Qingwei, JIANG Biao, et al. Carbon nanotubes coated on silica gels as a support of Cu-Co catalyst for the synthesis of higher alcohols from syngas[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11067-11072. |
105 | CHEN Gaofeng, SYZGANTSEVA Olga A, SYZGANTSEVA Maria A, et al. Hydrophobic dual metal silicate nanotubes for higher alcohol synthesis[J]. Applied Catalysis B: Environmental, 2023, 334: 122840. |
106 | KARIM Khalid, KHAN Asad. Carbon supported cobalt and molybdenum catalyst and use thereof for producing lower alcohols: US9409840[P]. 2016-08-09. |
107 | GUO Shaoxia, LI Zhuoshi, LI Yajun, et al. CoMn catalysts derived from partial decomposed layered CoMn-MOF materials for higher alcohol synthesis from syngas[J]. Chemical Engineering Journal, 2023, 463: 142359. |
108 | CUI Wengang, LI Yanting, ZHANG Hongbo, et al. In situ encapsulated Co/MnO x nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas[J]. Applied Catalysis B: Environmental, 2020, 278: 119262. |
[1] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
[2] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
[3] | ZHANG Haibing, LIU Yun’e, HUANG Zhihao, SHEN Rong. Electrocatalytic reduction of NO3--N by the prepared Ti foam-Ni-Sn/Bi cathode [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1100-1109. |
[4] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
[5] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
[6] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
[7] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[8] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
[9] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
[10] | YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
[11] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
[12] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
[13] | NI Peng, WANG Xianhong, HUANG Yuhan, MA Xiaotong, MA Zizhen, TAN Yan, ZHANG Huawei, LIU Ting. Latest progress and comparison of the injection demercuration application of activated carbon and magnetic metals adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524. |
[14] | ZOU Yan, LIN Wei, YANG Wei, ZHANG Yanrong. Optimization of wet desulfurization process with iron chelates [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 549-557. |
[15] | LIU Xinwei, GAO Shan, WANG Hongtao, WANG Jiancheng. Activation of gasification fine slag and aluminum ash and their adsorption properties [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 558-571. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |