| [1] |
黄维和, 李玉星, 陈朋超. 碳中和愿景下中国二氧化碳管道发展战略[J]. 天然气工业, 2023, 43(7): 1-9.
|
|
HUANG Weihe, LI Yuxing, CHEN Pengchao. China’s CO2 pipeline development strategy under the strategy of carbon neutrality[J]. Natural Gas Industry, 2023, 43(7): 1-9.
|
| [2] |
刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势[J]. 油气储运, 2022, 41(5): 498-514.
|
|
LIU Cuiwei, PEI Yebin, HAN Hui, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498-514.
|
| [3] |
ZHANG Ye, BHATTACHARJEE Gaurav, KUMAR Rajnish, et al. Solidified hydrogen storage (solid-HyStore) via clathrate hydrates[J]. Chemical Engineering Journal, 2022, 431: 133702.
|
| [4] |
赵予生, 徐洪武, 于晓辉, 等. 笼形水合物的科学与技术研究以及在能源和环境领域中的应用[J]. 物理, 2009, 38(2): 92-99.
|
|
ZHAO Yusheng, XU Hongwu, YU Xiaohui, et al. Clathrate hydrate science and technology with energy and environmental applications[J]. Physics, 2009, 38(2): 92-99.
|
| [5] |
李昊阳, 张炜, 李小森, 等. 水合物储氢的研究进展[J]. 化工进展, 2022, 41(12): 6285-6294.
|
|
LI Haoyang, ZHANG Wei, LI Xiaosen, et al. Research process of hydrate-based hydrogen storage[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294.
|
| [6] |
RIPMEESTER John A, John S TSE, RATCLIFFE Christopher I, et al. A new clathrate hydrate structure[J]. Nature, 1987, 325(6100): 135-136.
|
| [7] |
李新颖. TBAB耦合sⅡ型水合物制备高储氢材料及机理研究[D]. 广州: 华南理工大学, 2024.
|
|
LI Xinying. Study on preparation and mechanism of high hydrogen storage materials by coupling TBAB with sⅡ hydrate[D]. Guangzhou: South China University of Technology, 2024.
|
| [8] |
Willem L VOS, FINGER Larry W, HEMLEY Russell J, et al. Novel H2-H2O clathrates at high pressures[J]. Physical Review Letters, 1993, 71(19): 3150-3153.
|
| [9] |
ZHENG Ruyi, MOHAMMED Sohaib, JIA Yang, et al. The effect of H2 occupancy modes in small and large cages of H2-tetrahydrofuran hydrates on the hydrates’ stability and H2 storage capacity[J]. Physical Chemistry Chemical Physics, 2025, 27(13): 6532-6545.
|
| [10] |
BAO Wancheng, TENG Ying, WANG Pengfei, et al. Molecular analysis of hydrogen-propane hydrate formation mechanism and its influencing factors for hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 50: 697-708.
|
| [11] |
Yun-Ho AHN, MOON Seokyoon, Dong-Yeun KOH, et al. One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending[J]. Energy Storage Materials, 2020, 24: 655-661.
|
| [12] |
DI PROFIO Pietro, CANALE Valentino, GERMANI Raimondo, et al. Reverse micelles enhance the formation of clathrate hydrates of hydrogen[J]. Journal of Colloid and Interface Science, 2018, 516: 224-231.
|
| [13] |
谢应明, 龚金明, 刘道平, 等. 一种新型储氢方法——水合物储氢的研究概况与发展方向[J]. 化工进展, 2010, 29(5): 796-800, 806.
|
|
XIE Yingming, GONG Jinming, LIU Daoping, et al. Hydrogen stored in hydrates—A novel hydrogen storage method[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 796-800, 806.
|
| [14] |
GUO Yuanyuan, WU Wanqing, HAO Benhao, et al. Formation of hydrogen hydrate in the presence of thermodynamic promoters: A review and prospects[J]. International Journal of Hydrogen Energy, 2024, 60: 1462-1480.
|
| [15] |
YU Honglin, ZHANG Peng, LIU Mengqi, et al. CTAB serves as the best kinetic promoters of H2/DIOX mixed hydrates for moderate solidified hydrogen storage via clathrates[J]. Chemical Engineering Journal, 2025, 506: 159818.
|
| [16] |
MAO Wendy L, MAO Ho-Kwang, GONCHAROV Alexander F, et al. Hydrogen clusters in clathrate hydrate[J]. Science, 2002, 297(5590): 2247-2249.
|
| [17] |
MAO Wendy L, MAO Ho-Kwang. Hydrogen storage in molecular compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708-710.
|
| [18] |
WANG Xiaohui, QIN Huibo, DANDEKAR Abhijit, et al. Hydrate phase equilibrium of H2/CH4/CO2 ternary gas mixtures and cage occupancy percentage of hydrogen molecules[J]. Fluid Phase Equilibria, 2015, 403: 160-166.
|
| [19] |
高佳佳, 米媛媛, 周洋, 等. 新型储氢材料研究进展[J]. 化工进展, 2021, 40(6): 2962-2971.
|
|
GAO Jiajia, MI Yuanyuan, ZHOU Yang, et al. Recent developments in new hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2962-2971.
|
| [20] |
Naveed KHAN M. Hydrogen as future sustainable energy resource: An insight into technological advancements inhydrate-based hydrogen storage[J]. International Journal of Hydrogen Energy, 2025, 97: 1386-1398.
|
| [21] |
KIM Min-Kyung, Yun-Ho AHN. Gas hydrates for hydrogen storage: A comprehensive review and future prospects[J]. Korean Journal of Chemical Engineering, 2024, 41(1): 73-94.
|
| [22] |
SAIKIA Tinku, PATIL Shirish, SULTAN Abdullah. Hydrogen hydrate promoters for gas storage—A review[J]. Energies, 2023, 16(6): 2667.
|
| [23] |
张景, 张宏淑. sⅡ型氢气水合物促进剂的研究进展[J]. 山东化工, 2024, 53(7): 69-72.
|
|
ZHANG Jing, ZHANG Hongshu. Research progress on sⅡ type hydrogen hydrate promoter[J]. Shandong Chemical Industry, 2024, 53(7): 69-72.
|
| [24] |
BABU Ponnivalavan, NAMBIAR Abhishek, HE Tianbiao, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107.
|
| [25] |
WALSH Matthew R, Carolyn A KOH, SLOAN E Dendy, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth[J]. Science, 2009, 326(5956): 1095-1098.
|
| [26] |
WOLF Joachim. Liquid-hydrogen technology for vehicles[J]. MRS Bulletin, 2002, 27(9): 684-687.
|
| [27] |
DYADIN Yuri A, LARIONOV Eduard G, MANAKOV Andrei Yu, et al. Clathrate hydrates of hydrogen and neon[J]. Mendeleev Communications, 1999, 9(5): 209-210.
|
| [28] |
HASHIMOTO Shunsuke, MURAYAMA Shu, SUGAHARA Takeshi, et al. Thermodynamic and Raman spectroscopic studies on H2+tetrahydrofuran+water and H2+tetra-n-butyl ammonium bromide+water mixtures containing gas hydrates[J]. Chemical Engineering Science, 2006, 61(24): 7884-7888.
|
| [29] |
TSUDA Takaaki, OGATA Kyohei, HASHIMOTO Shunsuke, et al. Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates[J]. Chemical Engineering Science, 2009, 64(19): 4150-4154.
|
| [30] |
KUMAR Asheesh, DARABOINA Nagu, KUMAR Rajnish, et al. Experimental investigation to elucidate why tetrahydrofuran rapidly promotes methane hydrate formation kinetics: Applicable to energy storage[J]. The Journal of Physical Chemistry C, 2016, 120(51): 29062-29068.
|
| [31] |
ZHANG Jibao, LI Yan, YIN Zhenyuan, et al. Coupling amino acidL-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage[J]. Chemical Engineering Journal, 2023, 467: 143459.
|
| [32] |
ZHANG Jibao, LI Yan, RAO Yizhi, et al. Probing the pathway of H2-THF and H2-DIOX sⅡ hydrates formation: Implication on hydrate-based H2 storage[J]. Applied Energy, 2024, 376: 124289.
|
| [33] |
YAGASAKI Takuma, MATSUMOTO Masakazu, TANAKA Hideki. Formation of clathrate hydrates of water-soluble guest molecules[J]. The Journal of Physical Chemistry C, 2016, 120(38): 21512-21521.
|
| [34] |
YAGASAKI Takuma, MATSUMOTO Masakazu, TANAKA Hideki. Mechanism of slow crystal growth of tetrahydrofuran clathrate hydrate[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3305-3313.
|
| [35] |
Dong-Yeun KOH, KANG Hyery, LEE Huen. Multiple guest occupancy in clathrate hydrates and its significance in hydrogen storage[J]. Chemical Communications, 2013, 49(60): 6782-6784.
|
| [36] |
LEE Huen, LEE Jong-Won, KIM Do Youn, et al. Tuning clathrate hydrates for hydrogen storage[J]. Nature, 2005, 434(7034): 743-746.
|
| [37] |
KANG Dong Woo, LEE Wonhyeong, Yun-Ho AHN, et al. Exploring tuning phenomena of THF-H2 hydrates via molecular dynamics simulations[J]. Journal of Molecular Liquids, 2022, 349: 118490.
|
| [38] |
LEE Wonhyeong, KIM Min-Kyung, MOON Seokyoon, et al. Rapid hydrogen enclathration and unprecedented tuning phenomenon within superabsorbent polymers[J]. Applied Energy, 2025, 377: 124367.
|
| [39] |
ALAVI Saman, RIPMEESTER J A, KLUG D D. Molecular-dynamics study of structure Ⅱ hydrogen clathrates[J]. The Journal of Chemical Physics, 2005, 123(2): 24507.
|
| [40] |
LIU Jinxiang, HOU Jian, XU Jiafang, et al. Ab initio study of the molecular hydrogen occupancy in pure H2 and binary H2-THF clathrate hydrates[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17136-17143.
|
| [41] |
LU Hailong, WANG Jianwei, LIU Changling, et al. Multiple H2 occupancy of cages of clathrate hydrate under mild conditions[J]. Journal of the American Chemical Society, 2012, 134(22): 9160-9162.
|
| [42] |
JAFARI DAGHALIAN SOFLA Sahar, Alejandro D REY, SERVIO Phillip. Atomistic Investigation of the occupancy limits and stability of hydrogen hydrates as a hydrogen storage medium[J]. International Journal of Hydrogen Energy, 2024, 51: 184-192.
|
| [43] |
JAFARI DAGHALIAN SOFLA Sahar, Alejandro D REY, SERVIO Phillip. Impact of hydrogen cage occupancy on the mechanical properties and elastic anisotropies of sII hydrates[J]. Fluid Phase Equilibria, 2024, 585: 114172.
|
| [44] |
BRUMBY Paul E, YUHARA Daisuke, HASEGAWA Tomohiro, et al. Cage occupancies, lattice constants, and guest chemical potentials for structure Ⅱ hydrogen clathrate hydrate from Gibbs ensemble Monte Carlo simulations[J]. The Journal of Chemical Physics, 2019, 150(13): 134503.
|
| [45] |
KATSUMASA Keisuke, KOGA Kenichiro, TANAKA Hideki. On the thermodynamic stability of hydrogen clathrate hydrates[J]. The Journal of Chemical Physics, 2007, 127(4): 044509.
|
| [46] |
OMRAN Ahmed, NESTERENKO Nikolai, VALTCHEV Valentin. Ab initio mechanistic insights into the stability, diffusion and storage capacity of sⅠ clathrate hydrate containing hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8419-8433.
|
| [47] |
MATSUMOTO Yuuki, Gary GRIM R, KHAN Naveed M, et al. Investigating the thermodynamic stabilities of hydrogen and methane binary gas hydrates[J]. The Journal of Physical Chemistry C, 2014, 118(7): 3783-3788.
|
| [48] |
MOON Seokyoon, LEE Yunseok, SEO Dongju, et al. Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110789.
|
| [49] |
张宏淑, 梁攀, 薛颖颖, 等. 二元包合水合物储氢及促进剂作用的理论研究[J]. 高等学校化学学报, 2024, 45(1): 127-136.
|
|
ZHANG Hongshu, LIANG Pan, XUE Yingying, et al. Theoretical study on hydrogen storage and promoter effect of binary clathrate hydrates[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 127-136.
|
| [50] |
KRISHNAN Yogeshwaran, GHAANI Mohammad Reza, DESMEDT Arnaud, et al. Hydrogen inter-cage hopping and cage occupancies inside hydrogen hydrate: Molecular-dynamics analysis[J]. Applied Sciences, 2021, 11(1): 282.
|
| [51] |
RASOOLZADEH Ali, SHARIATI Alireza. Hydrogen hydrate cage occupancy: A key parameter for hydrogen storage and transport[J]. Fluid Phase Equilibria, 2019, 494: 8-20.
|
| [52] |
王芳, 穆金池, 张政, 等. 温和条件下甲烷提高水合物储氢稳定特性机理[J]. 天然气工业, 2024, 44(2): 188-196.
|
|
WANG Fang, MU Jinchi, ZHANG Zheng, et al. Mechanism of methane in improving the stability of hydrate hydrogen storage under mild conditions[J]. Natural Gas Industry, 2024, 44(2): 188-196.
|
| [53] |
GENG Chunyu, HAN Qingzhen, WEN Hao, et al. Molecular dynamics simulation on the decomposition of type SⅡ hydrogen hydrate and the performance of tetrahydrofuran as a stabiliser[J]. Molecular Simulation, 2010, 36(6): 474-483.
|
| [54] |
TRUEBA Alondra Torres, ROVETTO Laura J, FLORUSSE Louw J, et al. Phase equilibrium measurements of structure Ⅱ clathrate hydrates of hydrogen with various promoters[J]. Fluid Phase Equilibria, 2011, 307(1): 6-10.
|
| [55] |
VELUSWAMY Hari Prakash, KUMAR Rajnish, LINGA Praveen. Hydrogen storage in clathrate hydrates: Current state of the art and future directions[J]. Applied Energy, 2014, 122: 112-132.
|
| [56] |
ZHANG Jiudan, SCHÄFER Sylva Mareike, KABISCH Stefan, et al. Implication of sugar, protein and incretins in excessive glucagon secretion in type 2 diabetes after mixed meals[J]. Clinical Nutrition, 2023, 42(4): 467-476.
|
| [57] |
Naveed KHAN M, WARRIER Pramod, PETERS Cor J, et al. Advancements in hydrate phase equilibria and modeling of gas hydrates systems[J]. Fluid Phase Equilibria, 2018, 463: 48-61.
|
| [58] |
LIU Jinxiang, YAN Yujie, CHEN Gang, et al. Prediction of efficient promoter molecules of sH hydrogen hydrate: An abinitio study[J]. Chemical Physics, 2019, 516: 15-21.
|
| [59] |
ALAVI Saman, RIPMEESTER John A. Hydrogen-gas migration through clathrate hydrate cages[J]. Angewandte Chemie International Edition, 2007, 46(32): 6102-6105.
|
| [60] |
CHOI Yong Nam, SUNGIL PARK J M, Thierry STRÄSSLE, et al. Dynamics of hydrogen molecules in the channels of binary THF-H2 clathrate hydrate and its physicochemical significance on hydrogen storage[J]. International Journal of Hydrogen Energy, 2010, 35(23): 13068-13072.
|
| [61] |
KRISHNAN Yogeshwaran, GHAANI Mohammad Reza, ENGLISH Niall J. Hydrogen and deuterium molecular escape from clathrate hydrates: “Leaky” microsecond-molecular-dynamics predictions[J]. The Journal of Physical Chemistry C, 2021, 125(15): 8430-8439.
|
| [62] |
KLOTZ S, BESSON J M, HAMEL G, et al. Metastable ice Ⅶ at low temperature and ambient pressure[J]. Nature, 1999, 398(6729): 681-684.
|
| [63] |
TRINH Thuat T, WAAGE Magnus H, VAN ERP Titus S, et al. Low barriers for hydrogen diffusion in sⅡ clathrate[J]. Physical Chemistry Chemical Physics, 2015, 17(21): 13808-13812.
|
| [64] |
PEFOUTE E, KEMNER E, SOETENS J C, et al. Diffusive motions of molecular hydrogen confined in THF clathrate hydrate[J]. The Journal of Physical Chemistry C, 2012, 116(32): 16823-16829.
|
| [65] |
CAO Huayu, ENGLISH Niall J, MACELROY J M D. Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates[J]. The Journal of Chemical Physics, 2013, 138(9): 094507.
|
| [66] |
GORMAN Paul D, ENGLISH Niall J, MACELROY J M D. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates[J]. The Journal of Chemical Physics, 2012, 136(4): 044506.
|
| [67] |
FRANKCOMBE Terry J, KROES Geert-Jan. Molecular dynamics simulations of type-sⅡ hydrogen clathrate hydrate close to equilibrium conditions[J]. The Journal of Physical Chemistry C, 2007, 111(35): 13044-13052.
|
| [68] |
BURNHAM Christian J, FUTERA Zdenek, ENGLISH Niall J. Study of hydrogen-molecule guests in type Ⅱ clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics[J]. The Journal of Chemical Physics, 2018, 148(10): 102323.
|
| [69] |
颜克凤, 李小森, 孙丽华, 等. 储氢笼型水合物生成促进机理的分子动力学模拟研究[J]. 物理学报, 2011, 60(12): 645-652.
|
|
YAN Kefeng, LI Xiaosen, SUN Lihua, et al. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate[J]. Acta Physica Sinica, 2011, 60(12): 645-652.
|
| [70] |
CHEN Siyuan, WANG Yanhong, FAN Shuanshi, et al. Intriguing phenomenon of hydrogen molecules occupancy in clathrate hydrate cages: Implications for hydrogen storage[J]. Chemical Engineering Journal, 2024, 499: 156089.
|
| [71] |
ENGLISH Niall J, GORMAN Paul D, MACELROY J M D. Mechanisms for thermal conduction in hydrogen hydrate[J]. The Journal of Chemical Physics, 2012, 136(4): 044501.
|
| [72] |
CENDAGORTA Joseph R, SHEN Hengyuan, Zlatko BAČIĆ, et al. Enhanced sampling path integral methods using neural network potential energy surfaces with application to diffusion in hydrogen hydrates[J]. Advanced Theory and Simulations, 2021, 4(4): 2000258.
|
| [73] |
LU Qiangna, HE Xiao, HU Wenxin, et al. Stability, vibrations, and diffusion of hydrogen gas in clathrate hydrates: Insights from ab initio calculations on condensed-phase crystalline structures[J]. The Journal of Physical Chemistry C, 2019, 123(19): 12052-12061.
|
| [74] |
ZHANG Mingmin, NI Dongdong. Evaluating the gas storage capacity of 1,3-dioxolane-hydrogen binary hydrates via molecular simulations[J]. Journal of Molecular Liquids, 2024, 393: 123542.
|
| [75] |
LIU Shengli, ZHANG Wenxiu, WU Huanhua, et al. Molecular hydrogen storage in binary H2-CH4 clathrate hydrates[J]. Journal of Molecular Liquids, 2023, 376: 121496.
|
| [76] |
STRUZHKIN Viktor V, MILITZER Burkhard, MAO Wendy L, et al. Hydrogen storage in molecular clathrates[J]. Chemical Reviews, 2007, 107(10): 4133-4151.
|
| [77] |
LEE Wonhyeong, KANG Dong Woo, Yun-Ho AHN, et al. Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation[J]. Renewable and Sustainable Energy Reviews, 2023, 177: 113217.
|
| [78] |
FLORUSSE Louw J, PETERS Cor J, SCHOONMAN Joop, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[J]. Science, 2004, 306(5695): 469-471.
|
| [79] |
ZHANG Shixi, CHEN Guangjin, MA Changfeng, et al. Hydrate formation of hydrogen + hydrocarbon gas mixtures[J]. Journal of Chemical & Engineering Data, 2000, 45(5): 908-911.
|
| [80] |
WANG Yu, GLAZYRIN Konstantin, ROIZEN Valery, et al. Novel hydrogen clathrate hydrate[J]. Physical Review Letters, 2020, 125(25): 255702.
|
| [81] |
岳子瀚, 龙臻, 周雪冰, 等. sⅡ型水合物储氢研究进展[J]. 化工进展, 2023, 42(10): 5121-5134.
|
|
YUE Zihan, LONG Zhen, ZHOU Xuebing, et al. State of the art on hydrogen storage of sⅡ clathrate hydrate[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134.
|
| [82] |
陈玉凤, 周雪冰, 梁德青, 等. TBAB-CO2水合物形成过程的微观实验[J]. 光谱学与光谱分析, 2019, 39(9): 2889.
|
|
CHEN Yufeng, ZHOU Xuebing, LIANG Deqing, et al. Microscopic experimental study on the crystallization of TBAB-CO2 hydrate[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2889.
|
| [83] |
STROBEL Timothy A, TAYLOR Craig J, HESTER Keith C, et al. Molecular hydrogen storage in binary THF-H2 clathrate hydrates[J]. The Journal of Physical Chemistry B, 2006, 110(34): 17121-17125.
|
| [84] |
TRUEBA Alondra Torres, RADOVIĆ Ivona R, ZEVENBERGEN John F, et al. Kinetic measurements and in situ Raman spectroscopy study of the formation of TBAF semi-hydrates with hydrogen and carbon dioxide[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7326-7334.
|
| [85] |
PRASAD Pinnelli S R, SUGAHARA Takeshi, Amadeu K SUM, et al. Hydrogen storage in double clathrates with tert-butylamine[J]. The Journal of Physical Chemistry A, 2009, 113(24): 6540-6543.
|
| [86] |
OGATA Kyohei, HASHIMOTO Shunsuke, SUGAHARA Takeshi, et al. Storage capacity of hydrogen in tetrahydrofuran hydrate[J]. Chemical Engineering Science, 2008, 63(23): 5714-5718.
|
| [87] |
SUGAHARA Takeshi, HAAG Joanna C, PRASAD Pinnelli S R, et al. Increasing hydrogen storage capacity using tetrahydrofuran[J]. Journal of the American Chemical Society, 2009, 131(41): 14616-14617.
|
| [88] |
HASHIMOTO Shunsuke, SUGAHARA Takeshi, SATO Hiroshi, et al. Thermodynamic stability of H2 + tetrahydrofuran mixed gas hydrate in nonstoichiometric aqueous solutions[J]. Journal of Chemical & Engineering Data, 2007, 52(2): 517-520.
|
| [89] |
CHAPOY Antonin, ANDERSON Ross, TOHIDI Bahman. Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds[J]. Journal of the American Chemical Society, 2007, 129(4): 746-747.
|
| [90] |
STROBEL Timothy A, Carolyn A KOH, SLOAN E Dendy. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen[J]. The Journal of Physical Chemistry B, 2008, 112(7): 1885-1887.
|
| [91] |
VELUSWAMY Hari Prakash, CHEN Jianyu, LINGA Praveen. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates[J]. Chemical Engineering Science, 2015, 126: 488-499.
|
| [92] |
PARK Jeasung, LEE Huen. Spectroscopic evidences of the double hydrogen hydrates stabilized with ethane and propane[J]. Korean Journal of Chemical Engineering, 2007, 24(4): 624-627.
|
| [93] |
Gary GRIM R, KERKAR Prasad B, SHEBOWICH Michele, et al. Synthesis and characterization of sⅠ clathrate hydrates containing hydrogen[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18557-18563.
|
| [94] |
LUIS D P, ROMERO-RAMIREZ I E, GONZÁLEZ-CALDERÓN A, et al. The coexistence temperature of hydrogen clathrates: A molecular dynamics study[J]. The Journal of Chemical Physics, 2018, 148(11): 114503.
|
| [95] |
WANG Pengfei, LI Kehan, YANG Jianyu, et al. Experimental and theoretical study on dissociation thermodynamics and kinetics of hydrogen-propane hydrate[J]. Chemical Engineering Journal, 2021, 426: 131279.
|
| [96] |
HASEGAWA Tomohiro, BRUMBY Paul E, YASUOKA Kenji, et al. Mechanism for H2 diffusion in sⅡ hydrates by molecular dynamics simulations[J]. The Journal of Chemical Physics, 2020, 153(5): 054706.
|