Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 102-111.DOI: 10.16085/j.issn.1000-6613.2024-1434
• Energy processes and technology • Previous Articles
ZHANG Jida1(
), YUAN Jun2, QIAO Hongbin1, WANG Jinhai2, YANG Junhui1, CAI Zhenyi2(
), MA Zhongcheng1
Received:2024-09-02
Revised:2024-11-28
Online:2025-11-24
Published:2025-10-25
Contact:
CAI Zhenyi
张继达1(
), 袁君2, 乔红斌1, 王金海2, 杨俊辉1, 蔡振义2(
), 马中成1
通讯作者:
蔡振义
作者简介:张继达(1992—),男,硕士,工程师,研究方向为煤矿瓦斯梯级利用。E-mail:zhangjida119@163.com。
基金资助:CLC Number:
ZHANG Jida, YUAN Jun, QIAO Hongbin, WANG Jinhai, YANG Junhui, CAI Zhenyi, MA Zhongcheng. Research on the utilization technology of multi-source gas safe-mixing thermal storage oxidation waste heat[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 102-111.
张继达, 袁君, 乔红斌, 王金海, 杨俊辉, 蔡振义, 马中成. 多源瓦斯安全混合蓄热氧化余热利用技术[J]. 化工进展, 2025, 44(S1): 102-111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1434
| [1] | ZHANG Xinghua, WANG Haifeng, ZHAO Dan, et al. New insights into the drill cutting characteristics and fault distribution in gas-containing coal seams[J]. Geofluids, 2022, 2022(1): 3201581. |
| [2] | 杨温飞. 浅析煤矿瓦斯治理中的钻探技术及防治[J]. 内蒙古煤炭经济, 2024(14): 145-147. |
| YANG Wenfei. Analysis on drilling technology and prevention in coal mine gas control[J]. Inner Mongolia Coal Economy, 2024(14): 145-147. | |
| [3] | 李玥. 白龙山C2煤层煤孔隙结构对吸附解吸能力和钻屑解吸指标的影响[D]. 徐州: 中国矿业大学, 2022. |
| LI Yue. Influence of coal pore structure on adsorption and desorption capacity and cuttings desorption index of C2 coal seam in Bailongshan[D]. Xuzhou: China University of Mining and Technology, 2022. | |
| [4] | 张凯. 低浓度瓦斯发电气体预处理研究[J]. 能源与节能, 2024(6): 37-39, 43. |
| ZHANG Kai. Gas pretreatment for low-concentration gas power generation[J]. Energy and Energy Conservation, 2024(6): 37-39, 43. | |
| [5] | 刘军见. 煤矿瓦斯灾害防治技术[J]. 山西化工, 2018, 38(3): 200-201, 215. |
| LIU Junjian. Prevention and control technology of gas disaster in coal mine[J]. Shanxi Chemical Industry, 2018, 38(3): 200-201, 215. | |
| [6] | 邬喜仓, 孔德磊. 瓦斯抽采浓度影响因素分析[J]. 陕西煤炭, 2016, 35(6): 43-45. |
| WU Xicang, KONG Delei. Analysis on the influence factors of gas extraction concentration[J]. Shaanxi Coal, 2016, 35(6): 43-45. | |
| [7] | MORGENSTERN Olaf, ZENG Guang, DEAN Sam M, et al. Direct and ozone-mediated forcing of the southern annular mode by greenhouse gases[J]. Geophysical Research Letters, 2014, 41(24): 9050-9057. |
| [8] | WANG Jinsheng, RYAN David, ANTHONY Edward J. Reducing the greenhouse gas footprint of shale gas[J]. Energy Policy, 2011, 39(12): 8196-8199. |
| [9] | GIL Juliana. Agricultural development programmes reduce greenhouse gas emissions[J]. Nature Food, 2022, 3(12): 978. |
| [10] | 史平洋, 华丰. 煤矿瓦斯分类与综合利用的技术综述[J]. 集成电路应用, 2022, 39(7): 55-57. |
| SHI Pingyang, HUA Feng. Review on coal-mine gas and its utilization technology[J]. Application of IC, 2022, 39(7): 55-57. | |
| [11] | 马小童. 微波对煤中甲烷解吸—二氧化碳吸附双重激励作用及机理[D]. 焦作: 河南理工大学, 2019. |
| MA Xiaotong. Dual stimulation and mechanism of microwave on methane desorption and carbon dioxide adsorption in coal[D]. Jiaozuo: Henan Polytechnic University, 2019. | |
| [12] | 张永杰, 肖乐, 周方亮. 抽排乏风超低浓度瓦斯氧化热制取蒸汽技术[J]. 内燃机与动力装置, 2022, 39(1): 72-78. |
| ZHANG Yongjie, XIAO Le, ZHOU Fangliang. Technology of producing steam from ultra-low concentration gas oxidation heat of exhaust air[J]. Internal Combustion Engine & Powerplant, 2022, 39(1): 72-78. | |
| [13] | 张兴旺, 李雪琛, 席晓哲, 等. 利用煤矿瓦斯通过旋转式蓄热氧化装置在煤炭生产过程中应用[J]. 中国煤层气, 2024, 21(2): 44-47. |
| ZHANG Xingwang, LI Xuechen, XI Xiaozhe, et al. Application of coal mine methane in coal production process through a rotary regenerative oxidation device[J]. China Coalbed Methane, 2024, 21(2): 44-47. | |
| [14] | 洪威. 基于蓄热氧化及余热回收技术的挥发性有机废气治理方法[J]. 皮革制作与环保科技, 2023, 4(7): 109-111. |
| HONG Wei. Treatment method of volatile organic waste gas based on heat storage oxidation and waste heat recovery technology[J]. Leather Manufacture and Environmental Technology, 2023, 4(7): 109-111. | |
| [15] | 田涛, 韩雨, 张兴旺, 等. 旋转阀式蓄热氧化技术助力煤矿风排瓦斯综合利用[J]. 中国煤层气, 2023, 20(2): 39-42, 38. |
| TIAN Tao, HAN Yu, ZHANG Xingwang, et al. Comprehensive utilization of ventilation air methane in coal mines with rotary valve thermal oxidation technology[J]. China Coalbed Methane, 2023, 20(2): 39-42, 38. | |
| [16] | 张亚超. 不同动力煤对乏风瓦斯锅炉混烧影响规律研究[D]. 太原: 太原理工大学, 2022. |
| ZHANG Yachao. Study on the influence law of different power coals on mixed combustion of ventilation gas boiler[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
| [17] | MAO Yijin, ZHANG Yuwen. Quantifying reaction rates in methane oxidation: Atomistic simulations at high temperature[J]. Journal of Physics D: Applied Physics, 2024, 57(35): 355501. |
| [18] | ZHENG Bin, LIU Yongqi, LIU Ruixiang, et al. Catalytic oxidation of coal mine ventilation air methane in a preheat catalytic reaction reactor[J]. International Journal of Hydrogen Energy, 2015, 40(8): 3381-3387. |
| [19] | 张云, 郑化安, 苏艳敏, 等. 蜂窝陶瓷蓄热材料的研究现状[J]. 广州化工, 2014, 42(21): 15-17. |
| ZHANG Yun, ZHENG Hua’an, SU Yanmin, et al. The research status of honeycomb ceramics thermal storage material[J]. Guangzhou Chemical Industry, 2014, 42(21): 15-17. | |
| [20] | 尚庆辉. 莫来石陶瓷蓄热材料的热震断裂特性研究[D]. 淄博: 山东理工大学, 2015. |
| SHANG Qinghui. Study on thermal shock fracture characteristics of heat storage materials in mullite ceramic[D]. Zibo: Shandong University of Technology, 2015. | |
| [21] | 邓浩鑫, 吕元, 萧琦, 等. 通风瓦斯蓄热式热氧化过程数值模拟[J].煤炭学报, 2012, 37(8):1332-1336. |
| DENG Haoxin, Yuan LYU, XIAO Qi, et al. Simulation on regenerative thermal oxidation of ventilation air methane[J]. Journal of China Coal Society, 2012, 37(8):1332-1336. | |
| [22] | WU Yifan, YANG Zhiwei, WU Niuniu, et al. Design of three-dimensional interconnected porous hydroxyapatite ceramic-based composite phase change materials for thermal energy storage[J]. International Journal of Energy Research, 2020, 44(14): 11930-11940. |
| [23] | 郭伯伟. WZ003088燃烧室热工过程的模化[J]. 工业加热, 2005, 34(6): 26. |
| GUO Bowei. Modeling of thermal processes in WZ003088 combustion chamber[J]. Industrial Heating, 2005, 34(6): 26 | |
| [24] | 华建社, 焦勇, 王建宏. Al-Si/Al2O3高温复合相变蓄热材料的研究[J]. 热加工工艺, 2012, 41(8): 72-74, 78. |
| HUA Jianshe, JIAO Yong, WANG Jianhong. Study on properties of Al-Si/Al2O3 composite phase change material for thermal energy storage[J]. Hot Working Technology, 2012, 41(8): 72-74, 78. | |
| [25] | 袁新辉, 崔文彬, 孙建航, 等. 相变蓄热材料成核触发方法和机理综述[J]. 化工新型材料, 2022, 50(11): 49-55. |
| YUAN Xinhui, CUI Wenbin, SUN Jianhang, et al. Review of nucleation triggering methods and mechanism of phase change heat storage materials[J]. New Chemical Materials, 2022, 50(11): 49-55. | |
| [26] | 秦倩. 相变蓄热装置强化换热技术研究进展[J]. 科技资讯, 2023, 21(10): 137-142. |
| QIN Qian. Research progress of heat transfer enhancement technology of phase-change heat storage devices[J]. Science & Technology Information, 2023, 21(10): 137-142. | |
| [27] | 王迪, 程勃. 相变蓄热技术在建筑节能中的应用分析[J]. 住宅与房地产, 2024(14): 123-125. |
| WANG Di, CHENG Bo. Application analysis of phase change thermal storage technology in building energy saving[J]. Housing and Real Estate, 2024(14): 123-125. | |
| [28] | ZHANG Xiaoyan, XU Muyan, LIU Lang, et al. Study on thermal performance of casing-type mine heat recovery device with phase change materials filling in annular space[J]. International Journal of Energy Research, 2021, 45(12): 17577-17596. |
| [29] | FERNÁNDEZ Angel G, Luis GONZÁLEZ-FERNÁNDEZ, GROSU Yaroslav, et al. Physicochemical characterization of phase change materials for industrial waste heat recovery applications[J]. Energies, 2022, 15(10): 3640. |
| [30] | 邬可谊. 泡沫金属相变蓄热换热器在余热利用中的模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(5): 153-158. |
| WU Keyi. Simulation of heat exchanger based on phase change of foam metals in waste-heat recovery[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 153-158. | |
| [31] | 马群. 金属相变微胶囊/陶瓷基复合相变蓄热材料的制备与性能研究[D]. 宁波: 宁波大学, 2022. |
| MA Qun. Preparation and properties of metal phase change microcapsules/ceramic matrix composite phase change thermal storage materials[D]. Ningbo: Ningbo University, 2022. | |
| [32] | ZHU Shilei, NGUYEN Mai Thanh, YONEZAWA Tetsu. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage[J]. Nanoscale Advances, 2021, 3(16): 4626-4645. |
| [33] | NYALLANG NYAMSI Serge, TOLJ Ivan, LOTOTSKYY Mykhaylo. Metal hydride beds-phase change materials: Dual mode thermal energy storage for medium-high temperature industrial waste heat recovery[J]. Energies, 2019, 12(20): 3949. |
| [34] | MOSZOWSKI Bartosz, WAJMAN Tomasz, SOBCZAK Krzysztof, et al. The analysis of distribution of the reaction mixture in ammonia oxidation reactor[J]. Polish Journal of Chemical Technology, 2019, 21(1): 9-12. |
| [35] | XU Ningjin, COLLINS Don R. Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies[J]. Atmospheric Measurement Techniques, 2021, 14(4): 2891-2906. |
| [36] | 高方林. 基于5 kW太阳模拟器聚集辐照下热化学反应器性能研究[D]. 唐山: 华北理工大学, 2023. |
| GAO Fanglin. Performance study of thermochemical reactor under concentrated radiation based on 5kW solar simulator[D].Tangshan: North China University of Science and Technology, 2023. | |
| [37] | 王晗, 张炀, 李宏, 等. 基于ANSYS的气化炉结构分析和优化设计[J]. 工业炉, 2018, 40(6): 45-48. |
| WANG Han, ZHANG Yang, LI Hong, et al. Structure analysis and optimization design of gasifier based on ANSYS[J]. Industrial Furnace, 2018, 40(6): 45-48. | |
| [38] | 程源洪, 张亚新, 肖建发, 等. 煤制天然气甲烷化反应器过程模拟与结构优化[J]. 煤炭转化, 2015, 38(4): 89-93. |
| CHENG Yuanhong, ZHANG Yaxin, XIAO Jianfa, et al. Process simulation and structure optimization of coal gas methanation reactor[J]. Coal Conversion, 2015, 38(4): 89-93. | |
| [39] | MOORE Stuart J, PINKARD Brian R, PUROHIT Anmol L, et al. Design of a small-scale supercritical water oxidation reactor. Part Ⅰ: Experimental characterization[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11450-11457. |
| [44] | ZHOU Bo, TANG Guibin, SUN Maocun. Research on object-oriented pre-warning expert system of coal mine gas safety[J]. Geomatics World, 2013, 20(4): 78-81. |
| [45] | HU Jiaqi, HUANG Rui, XU Fangting. Data mining in coal-mine gas explosion accidents based on evidence-based safety: A case study in China[J]. Sustainability, 2022, 14(24): 16346. |
| [46] | SUN Zhenming, LI Dong. Coal mine gas safety evaluation based on adaptive weighted least squares support vector machine and improved Dempster-Shafer evidence theory[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 8782450. |
| [47] | LIU Hang, ZHAO Zhifeng, XUE Zhaomei. Intelligent risk assessment model of coal mine gas explosion based on FTA and BP neural network[C]//2023 5th International Conference on Intelligent Control, Measurement and Signal Processing. Chengdu, China: IEEE, 2023: 1233-1237. |
| [48] | NIU Lixia, ZHAO Jin, YANG Jinhui. An impacting factors analysis of unsafe acts in coal mine gas explosion accidents based on HFACS-ISM-BN[J]. Processes, 2023, 11(4): 1055. |
| [49] | YANG Jinhui, ZHAO Jin, SHAO Liangshan. Risk assessment of coal mine gas explosion based on fault tree analysis and fuzzy polymorphic Bayesian network: A case study of Wangzhuang coal mine[J]. Processes, 2023, 11(9): 2619. |
| [40] | PUROHIT Anmol L, MISQUITH John A, PINKARD Brian R, et al. Design of a small-scale supercritical water oxidation reactor. Part Ⅱ: Numerical modeling[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11458-11469. |
| [41] | 李磊. 瓦斯蓄热氧化低浓度瓦斯安全混配工艺设计[J]. 煤炭工程, 2019, 51(3): 33-36. |
| LI Lei. Design of safe mixing and regulation process for low concentration gas using gas storage thermal oxidation[J]. Coal Engineering, 2019, 51(3): 33-36. | |
| [42] | 党建亮, 聂尧. 基于AHP和FTA的煤矿瓦斯安全评价方法研究[J].内蒙古煤炭经济, 2015(2): 20-22. |
| DANG Jianliang, NIE Yao. Study of coal mine gas safety evaluation method based on AHP and FTA[J]. Inner Mongolia Coal Economy, 2015(2): 20-22. | |
| [43] | LI Bing, WANG Enyuan, SHANG Zheng, et al. Optimize the early warning time of coal and gas outburst by multi-source information fusion method during the tunneling process[J]. Process Safety and Environmental Protection, 2021, 149: 839-849. |
| [44] | 周波, 唐桂彬, 孙茂存. 基于面向对象的瓦斯安全预警专家系统研究[J]. 地理信息世界, 2013, 20(4): 78-81. |
| [1] | ZENG Cheng, LU Wei, MENG Shida, QIN Rishuai. Thermal-transpiration-effect-based carbon dioxide separation system for flue gas from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5214-5220. |
| [2] | ZHANG Chunwei, ZHANG Xuejun, ZHAO Yang. Modeling and analysis of latent heat storage unit used in air separation purification system [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3099-3106. |
| [3] | Zhihong WANG, Xiaoming DING, Ming’ou WU, Xiaoyan SHEN. Application of organic Rankine cycle in multi-grade waste heat power generation [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2189-2196. |
| [4] | HUANG Jinglun, WANG Huitao, GE Zhong, HAN Jingrong, ZHAO Lingling. Thermodynamic performance of dual-pressure expansion organic Rankine cycle power generation system driven by low-middle temperature waste heat [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3303-3311. |
| [5] | HAN Zhonghe, XU Hongsheng, FAN Wei, ZHAO Ruocheng, WANG Zhi. Comparison of thermodynamic performance and economic efficiency of ORC system for low temperature flue gas [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4010-4016. |
| [6] | HONG Yongqiang, CHEN Guifang, MA Chunyuan, MAO Yanpeng, YANG Deping, LIU Xiao, SHEN Rongsheng. Evaporation characteristics of wet desulfurization wastewater in liquid column form [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2698-2706. |
| [7] | ZHU Yilin, LI Weiyi, SUN Guanzhong, TANG Qiang, GAO Jing, CAO Chunhui. Performance analysis for waste heat recovery system of ship diesel engine based on organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3858-3865. |
| [8] | LI Weiyi, GAO Jing, LI Zishen, ZHANG Haijia. Working fluids optimization based on economy analysis and exergy efficiency for low-temperature organic Rankine cycle [J]. Chemical Industry and Engineering Progree, 2016, 35(02): 369-375. |
| [9] | LI Weiyi, LIANG Na, MENG Jinying, JIA Xiangdong, LI Zhihui. Effect of ammonia concentration of base solution on different target parameters [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 957-964. |
| [10] | LUO Chao1,2,GONG Yulie1,2,MA Weibin1,2. Experiment of ammonia water falling film evaporation [J]. Chemical Industry and Engineering Progree, 2011, 30(9): 1889-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |