Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5772-5785.DOI: 10.16085/j.issn.1000-6613.2020-2208

• Resources and environmental engineering • Previous Articles     Next Articles

Review on soot formation during biomass pyrolysis

JIANG Hao1(), ZHU Youjian1,2(), SHAO Jing’ai1,3, CHENG Wei1, WU Guihao1, YANG Haiping1, CHEN Hanping1,3   

  1. 1.State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, Hubei, China
    2.School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
    3.Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, Hubei, China
  • Received:2020-11-05 Revised:2020-12-22 Online:2021-10-25 Published:2021-10-10
  • Contact: ZHU Youjian

生物质热解碳烟的研究进展

蒋好1(), 朱有健1,2(), 邵敬爱1,3, 成伟1, 吴贵豪1, 杨海平1, 陈汉平1,3   

  1. 1.华中科技大学能源与动力工程学院煤燃烧国家重点实验室,湖北 武汉 430074
    2.郑州轻工业大学能源与动力工程学院,河南 郑州 450002
    3.华中科技大学能源与动力工程学院新能源科学与工程系,湖北 武汉 430074
  • 通讯作者: 朱有健
  • 作者简介:蒋好(1994—),男,硕士研究生,研究方向为生物质和含碳固废热解。E-mail:jiang_hao@hust.edu.cn
  • 基金资助:
    国家自然科学基金(51706210)

Abstract:

Soot, a type of solid carbonaceous nanoparticles, is the main components in PM2.5, and it is also the important contributor to global warming due to its high radiation. The generation of soot will reduce the energy utilization efficiency due to lower carbon conversion rate during biomass thermal chemical conversion process, and it can also downgrade the quality and yield of syngas during biomass gasification. Pyrolysis is the initial process during biomass thermal chemical conversion process. The characteristics, formation mechanism and emission reduction methods of soot during biomass pyrolysis are significant for the control of soot during thermal chemical conversion process. This study summarizes the research progress of biomass pyrolysis soot from the respects of sampling, emission, characteristics analysis, formation mechanism and reduction methods, mainly discusses soot yield, chemical composition, micro-morphologies, internal structure and reactivity, and summarizes the effects of feedstock characteristics and pyrolysis conditions on soot yield and reactivity. Measures to achieve soot control are also summarized. The current studies were carried out through the analyze of final soot particles. The evolutionary transformation mechanism of soot precursors, soot oxidation and elimination during biomass pyrolysis are still unclear. In addition, the formation of soot during pyrolysis is affected by feedstock and pyrolysis conditions, but current studies mostly focused on the impact analysis of a single factor. The multi-factor optimization analysis on soot formation needs to be strengthened.

Key words: biomass, pyrolysis, soot, formation mechanism, soot reduction

摘要:

碳烟是燃料不完全燃烧或气化形成的纳米级碳质颗粒,是空气中细颗粒物PM2.5的主要来源之一,也是仅次于CO2的温室效应主要贡献源之一。碳烟的生成会降低生物质热转化过程中的能量利用效率以及气化过程中合成气的品质。作为生物质热化学转化过程的初始步骤,热解碳烟的生成特性、形成机理和减排方法对转化过程中碳烟的控制具有指导意义。本文从生物质热解碳烟的取样、排放特性、理化性质、生成机理及减排措施等方面进行了综述。着重介绍了热解碳烟的产率、化学组成、微观样貌、内部结构和反应性等,总结了原料特性及热解工况对碳烟产率和反应性的影响,汇总了当前调控热解碳烟排放的主要措施。指出目前针对生物质热解碳烟前体的形成及演化转变机理仍不明确,热解碳烟的氧化反应机理研究鲜有报道。此外,热解碳烟生成受原料类型和热解工况等诸多因素影响,当前研究多为单因素的影响分析,缺乏针对碳烟排放的多因素耦合优化研究。

关键词: 生物质, 热解, 碳烟, 生成机理, 减排

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd