1 |
SYMOENS S H, OLAHOVA N, MUN~OZ Gandarillas A E, et al. State-of-the-art of coke formation during steam cracking: anti-coking surface technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(48): 16117-16136.
|
2 |
MUÑOZ GANDARILLAS A E, VAN GEEM K M, REYNIERS M F, et al. Coking resistance of specialized coil materials during steam cracking of sulfur-free naphtha[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13644-13655.
|
3 |
李保有, 郭英锋, 张磊, 等. 一种新型裂解炉炉管强化传热数值模拟[J]. 化工进展, 2015, 34(12): 4203-4208, 4219.
|
|
LI Baoyou, GUO Yingfeng, ZHANG Lei, et al. Numerical simulation of a new type intensified heat transfer radiation tube for cracking furnace[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4203-4208, 4219.
|
4 |
MAHMOUDI E, HAFIZI A, RAHIMPOUR M R, et al. Inhibition effect of CeO2 promoted SiO2 coating on coke growth during steam cracking of ethane[J]. Chemical Engineering Research and Design, 2018, 136: 271-281.
|
5 |
王志远, 丁旭东, 王博研, 等. 硫化物和硫/磷化合物的添加方式对石脑油热裂解结焦影响的研究[J]. 化工学报, 2020, 71(11): 5320-5336.
|
|
WANG Zhiyuan, DING Xudong, WANG Boyan, et al. Addition methods of sulfur and sulfur/phosphorus-based compounds on coking behavior during thermal cracking of naphtha[J]. CIESC Journal, 2020, 71(11): 5320-5336.
|
6 |
OLAHOVA N, SARRIS S A, REYNIERS M F, et al. Coking tendency of 25Cr-35Ni alloys: influence of temperature, sulfur addition, and cyclic aging[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3138-3148.
|
7 |
JAZAYERI S M, KARIMZADEH R. Experimental investigation of initial coke formation over stainless steel, chromium, and iron in thermal cracking of ethane with hydrogen sulfide as an additive[J]. Energy & Fuels, 2011, 25(10): 4235-4247.
|
8 |
ZHANG Zhaobin, ALBRIGHT L F. Pretreatments of coils to minimize coke formation in ethylene furnaces[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1991-1994.
|
9 |
BAO Binbin, LIU Jinglei, XU Hong, et al. Inhibitory effect of MnCr2O4 spinel coating on coke formation during light naphtha thermal cracking[J]. RSC Advances, 2016, 6: 68934-68941.
|
10 |
WANG Zhiyuan, DING Xudong, GUO Xueyan, et al. Investigation into the anticoking performances of sol-gel-derived SiO2 and SiO2-CeO2 coatings during thermal pyrolysis of light naphtha[J]. Energy & Fuels, 2021, 35(3): 2562-2578.
|
11 |
GONG Xianlong, ZOU Tengxiu, DENG Songhui, et al. Anti-coking application of TiO2-Al2O3 composite coating prepared by MOCVD[J]. Transactions of the IMF, 2020, 98(1): 37-41.
|
12 |
JI Ruicheng, CHEN Jiabin, LIU Tongcai, et al. Critical review of perovskites-based advanced oxidation processes for wastewater treatment: operational parameters, reaction mechanisms, and prospects[J]. Chinese Chemical Letters, 2022, 33(2): 643-652.
|
13 |
ANANTHARAMAN A, JOSEPHINE B A, TERESITA V M, et al. Photo-Fenton activity of magnesium substituted cerium ferrite perovskites for degradation of methylene blue via sol-gel method[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5116-5129.
|
14 |
GARCIA-MUÑOZ P, LEFEVRE C, ROBERT D, et al. Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment[J]. Applied Catalysis B: Environmental, 2019, 248: 120-128.
|
15 |
SCHMAL M, PEREZ C A C, MAGALHÃES R N S H. Synthesis and characterization of perovskite-type oxides La1- x M x CoO3 (M=Ce, Sr) for the selective CO oxidation (SELOX)[J]. Topics in Catalysis, 2014, 57(10/11/12/13): 1103-1111.
|
16 |
BASHAN V, UST Y. Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation[J]. International Journal of Energy Research, 2019, 43(14): 7755-7789.
|
17 |
WANG Qiyao, LUO Cong, LI Xiaoshan, et al. Development of LaFeO3 modified with potassium as catalyst for coal char CO2 gasification[J]. Journal of CO2 Utilization, 2019, 32: 163-169.
|
18 |
DING Haoran, XU Yongqing, LUO Cong, et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas[J]. Energy Conversion and Management, 2018, 171: 12-19.
|
19 |
PECCHI G, JILIBERTO M G, DELGADO E J, et al. Effect of B-site cation on the catalytic activity of La1- x Ca x BO3 (B = Fe, Ni) perovskite-type oxides for toluene combustion[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(8): 1067-1073.
|
20 |
LI Yang, CHEN Lu, HONG Liu, et al. Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder[J]. Journal of Alloys and Compounds, 2019, 785: 838-845.
|
21 |
ZHU Junjiang, LI Hailong, ZHONG Linyun, et al. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catalysis, 2014, 4(9): 2917-2940.
|
22 |
王兆栋. 钙钛矿型氧电极催化剂LaMnO3的掺杂改性研究及应用[D]. 合肥: 合肥工业大学, 2016.
|
|
WANG Zhaodong. Research and application of the doped LaMnO3 perovskite as oxygen electrode catalyst[D]. Hefei: Hefei University of Technology, 2016.
|
23 |
ZHANG Chuanhui, WANG Chao, ZHAN Wangcheng, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts[J]. Applied Catalysis B: Environmental, 2013, 129: 509-516.
|
24 |
SUTTHIUMPORN K, MANEERUNG T, KATHIRASER Y, et al. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C—H activation and carbon suppression[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11195-11207.
|
25 |
GHAFFARI M, SHANNON M, HUI H, et al. Preparation, surface state and band structure studies of SrTi1 - x Fe x O3 - δ (x = 0~1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy[J]. Surface Science, 2012, 606(5/6): 670-677.
|
26 |
MISHRA A, PRASAD R. Preparation and application of perovskite catalysts for diesel soot emissions control: an overview[J]. Catalysis Reviews, 2014, 56(1): 57-81.
|
27 |
ZHANG Xiaojing, LI Huaju, LI Yong, et al. Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite[J]. Chinese Journal of Catalysis, 2012, 33(7): 1109-1114.
|
28 |
BEYSSAC O, GOFFÉ B, PETITET J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276.
|
29 |
PAWLYTA M, ROUZAUD J N, DUBER S. Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information[J]. Carbon, 2015, 84: 479-490.
|
30 |
RESHETENKO T V, AVDEEVA L B, ISMAGILOV Z R, et al. Catalytic filamentous carbon: structural and textural properties[J]. Carbon, 2003, 41(8): 1605-1615.
|
31 |
SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.
|
32 |
FERRARI A C. Determination of bonding in diamond-like carbon by Raman spectroscopy[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 1053-1061.
|
33 |
SHENG Changdong. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.
|
34 |
BAO Binbin, LIU Jinglei, XU Hong, et al. Effect of selective oxidation and sulphur/phosphorus-containing compounds on coking behaviour during light naphtha thermal cracking[J]. The Canadian Journal of Chemical Engineering, 2017, 95(8): 1480-1488.
|
35 |
WANG Zhiyuan, BAO Binbin. Investigation on coking performance with sulfur/phosphorous-containing additive and anti-coking SiO2/S coating during thermal cracking of light naphtha[J]. Energy Procedia, 2017, 105: 5122-5127.
|