Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 192-201.DOI: 10.16085/j.issn.1000-6613.2024-0024
• Energy processes and technology • Previous Articles Next Articles
ZHANG Qiang1(), SUN Nan1, ZHENG Junjie2, WU Qiang1, LIU Chuanhai1, LI Yuanji1
Received:
2024-01-04
Revised:
2024-05-16
Online:
2025-02-13
Published:
2025-01-15
Contact:
ZHANG Qiang
张强1(), 孙楠1, 郑俊杰2, 吴强1, 刘传海1, 李元吉1
通讯作者:
张强
作者简介:
张强(1986—),教授,博士生导师,从事瓦斯灾害防治与利用、水合物技术应用研究。E-mail:zq3946630@163.com。
基金资助:
CLC Number:
ZHANG Qiang, SUN Nan, ZHENG Junjie, WU Qiang, LIU Chuanhai, LI Yuanji. Effect of mixed thermodynamic promoters on kinetic and recovery study of hydration separation coal mine gas[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 192-201.
张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201.
混合热力学促进剂体系 | 相平衡条件 | ∆p/MPa | |
---|---|---|---|
peq/MPa | T/K | ||
(30%CH4/70%N2)THF-TBAB | 0.57 | 282.87 | 2.43 |
(30%CH4/70%N2)THF-TBAF | 0.57 | 282.9 | 2.43 |
(30%CH4/70%N2)CP-TBAB | 0.47 | 283.8 | 2.53 |
(30%CH4/70%N2)CP-TBAF | 0.42 | 284.49 | 2.58 |
混合热力学促进剂体系 | 相平衡条件 | ∆p/MPa | |
---|---|---|---|
peq/MPa | T/K | ||
(30%CH4/70%N2)THF-TBAB | 0.57 | 282.87 | 2.43 |
(30%CH4/70%N2)THF-TBAF | 0.57 | 282.9 | 2.43 |
(30%CH4/70%N2)CP-TBAB | 0.47 | 283.8 | 2.53 |
(30%CH4/70%N2)CP-TBAF | 0.42 | 284.49 | 2.58 |
实验 编号 | 添加剂及 摩尔分数 | 诱导时间 IT/min | t90/min | IT时刻气体消耗量/mmol·mol-1 | IT+3h时刻气体消耗量/mmol·mol-1 | 初始水合物生长速率NR30 /mmol·mol-1·h-1 | 水合物相中CH4摩尔分数/% | 分离因子 | CH4回收率/% |
---|---|---|---|---|---|---|---|---|---|
A-1 | THF(5.56%)-Trp(0.06%) | 2.70 | 54.67 | 0.19 | 26.00 | 0.68 | 54.68 | 6.61 | 67.65 |
A-2 | 1.30 | 55.00 | 0.16 | 25.23 | 0.65 | 53.50 | 6.01 | 66.36 | |
A-3 | 1.70 | 40.67 | 0.08 | 30.05 | 0.79 | 49.12 | 4.80 | 67.08 | |
均值 | 1.9(±0.72) | 50.11(±8.18) | 0.14(±0.06) | 27.09(±2.59) | 0.71(±0.07) | 52.43(±2.93) | 5.81(±0.92) | 67.03(±0.65) | |
A-4 | THF(5.56%)-TBAB(0.3%)-Trp(0.06%) | 2.30 | 476.00 | 0.02 | 17.50 | 0.21 | 40.72 | 2.23 | 50.96 |
A-5 | 2.30 | 450.67 | 0.02 | 17.46 | 0.20 | 43.25 | 2.63 | 52.68 | |
A-6 | 4.00 | 479.00 | 0.06 | 17.79 | 0.19 | 44.61 | 2.82 | 51.56 | |
均值 | 2.87(±0.98) | 468.56(±15.56) | 0.03(±0.02) | 17.58(±0.18) | 0.2(±0.01) | 42.86(±1.97) | 2.56(±0.3) | 51.73(±0.87) | |
A-7 | THF(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 277.00 | 0.04 | 24.65 | 0.15 | 37.25 | 1.89 | 56.68 |
A-8 | 16.70 | 271.67 | 0.05 | 29.36 | 0.30 | 37.02 | 1.97 | 61.55 | |
A-9 | 16.70 | 209.00 | 0.02 | 31.17 | 0.19 | 36.75 | 1.91 | 60.93 | |
均值 | 14.8(±3.29) | 252.56(±37.82) | 0.04(±0.02) | 28.39(±3.37) | 0.21(±0.08) | 37.01(±0.25) | 1.92(±0.04) | 59.72(±2.65) | |
B-1 | CP(5.56%)-Trp(0.06%) | 16.30 | 61.67 | 0.03 | 9.56 | 0.29 | 77.57 | 12.62 | 39.18 |
B-2 | 14.70 | 65.00 | 0.01 | 12.06 | 0.21 | 65.97 | 6.91 | 40.36 | |
B-3 | 12.00 | 68.33 | 0.06 | 10.65 | 0.17 | 72.63 | 10.02 | 42.40 | |
均值 | 14.33(±2.17) | 65(±3.33) | 0.03(±0.03) | 10.76(±1.25) | 0.22(±0.06) | 72.06(±5.82) | 9.85(±2.86) | 40.65(±1.63) | |
B-4 | CP(5.56%)-TBAB(0.3%)-Trp(0.06%) | 36.70 | 384.33 | 0.01 | 10.77 | 0.05 | 64.04 | 9.32 | 62.10 |
B-5 | 27.00 | 409.33 | 0.02 | 10.59 | 0.06 | 63.26 | 9.23 | 63.32 | |
B-6 | 29.30 | 436.00 | 0.02 | 9.93 | 0.03 | 62.04 | 8.81 | 63.97 | |
均值 | 31.00(±5.07) | 409.89(±25.84) | 0.02(±0.01) | 10.43(±0.44) | 0.05(±0.02) | 63.11(±1.01) | 9.12(±0.27) | 63.13(±0.95) | |
B-7 | CP(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 423.00 | 0.01 | 15.11 | 0.00 | 70.32 | 15.25 | 68.23 |
B-8 | 16.70 | 641.00 | 0.02 | 16.45 | 0.14 | 65.32 | 12.36 | 70.12 | |
B-9 | 16.70 | 467.67 | 0.01 | 10.62 | 0.06 | 63.36 | 10.24 | 67.15 | |
均值 | 14.8(±3.29) | 510.56(±115.15) | 0.01(±0.01) | 14.06(±3.05) | 0.07(±0.07) | 66.33(±3.59) | 12.62(±2.51) | 68.5(±1.50) | |
C | 纯水 | — | — | — | — | — | — | — | — |
实验 编号 | 添加剂及 摩尔分数 | 诱导时间 IT/min | t90/min | IT时刻气体消耗量/mmol·mol-1 | IT+3h时刻气体消耗量/mmol·mol-1 | 初始水合物生长速率NR30 /mmol·mol-1·h-1 | 水合物相中CH4摩尔分数/% | 分离因子 | CH4回收率/% |
---|---|---|---|---|---|---|---|---|---|
A-1 | THF(5.56%)-Trp(0.06%) | 2.70 | 54.67 | 0.19 | 26.00 | 0.68 | 54.68 | 6.61 | 67.65 |
A-2 | 1.30 | 55.00 | 0.16 | 25.23 | 0.65 | 53.50 | 6.01 | 66.36 | |
A-3 | 1.70 | 40.67 | 0.08 | 30.05 | 0.79 | 49.12 | 4.80 | 67.08 | |
均值 | 1.9(±0.72) | 50.11(±8.18) | 0.14(±0.06) | 27.09(±2.59) | 0.71(±0.07) | 52.43(±2.93) | 5.81(±0.92) | 67.03(±0.65) | |
A-4 | THF(5.56%)-TBAB(0.3%)-Trp(0.06%) | 2.30 | 476.00 | 0.02 | 17.50 | 0.21 | 40.72 | 2.23 | 50.96 |
A-5 | 2.30 | 450.67 | 0.02 | 17.46 | 0.20 | 43.25 | 2.63 | 52.68 | |
A-6 | 4.00 | 479.00 | 0.06 | 17.79 | 0.19 | 44.61 | 2.82 | 51.56 | |
均值 | 2.87(±0.98) | 468.56(±15.56) | 0.03(±0.02) | 17.58(±0.18) | 0.2(±0.01) | 42.86(±1.97) | 2.56(±0.3) | 51.73(±0.87) | |
A-7 | THF(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 277.00 | 0.04 | 24.65 | 0.15 | 37.25 | 1.89 | 56.68 |
A-8 | 16.70 | 271.67 | 0.05 | 29.36 | 0.30 | 37.02 | 1.97 | 61.55 | |
A-9 | 16.70 | 209.00 | 0.02 | 31.17 | 0.19 | 36.75 | 1.91 | 60.93 | |
均值 | 14.8(±3.29) | 252.56(±37.82) | 0.04(±0.02) | 28.39(±3.37) | 0.21(±0.08) | 37.01(±0.25) | 1.92(±0.04) | 59.72(±2.65) | |
B-1 | CP(5.56%)-Trp(0.06%) | 16.30 | 61.67 | 0.03 | 9.56 | 0.29 | 77.57 | 12.62 | 39.18 |
B-2 | 14.70 | 65.00 | 0.01 | 12.06 | 0.21 | 65.97 | 6.91 | 40.36 | |
B-3 | 12.00 | 68.33 | 0.06 | 10.65 | 0.17 | 72.63 | 10.02 | 42.40 | |
均值 | 14.33(±2.17) | 65(±3.33) | 0.03(±0.03) | 10.76(±1.25) | 0.22(±0.06) | 72.06(±5.82) | 9.85(±2.86) | 40.65(±1.63) | |
B-4 | CP(5.56%)-TBAB(0.3%)-Trp(0.06%) | 36.70 | 384.33 | 0.01 | 10.77 | 0.05 | 64.04 | 9.32 | 62.10 |
B-5 | 27.00 | 409.33 | 0.02 | 10.59 | 0.06 | 63.26 | 9.23 | 63.32 | |
B-6 | 29.30 | 436.00 | 0.02 | 9.93 | 0.03 | 62.04 | 8.81 | 63.97 | |
均值 | 31.00(±5.07) | 409.89(±25.84) | 0.02(±0.01) | 10.43(±0.44) | 0.05(±0.02) | 63.11(±1.01) | 9.12(±0.27) | 63.13(±0.95) | |
B-7 | CP(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 423.00 | 0.01 | 15.11 | 0.00 | 70.32 | 15.25 | 68.23 |
B-8 | 16.70 | 641.00 | 0.02 | 16.45 | 0.14 | 65.32 | 12.36 | 70.12 | |
B-9 | 16.70 | 467.67 | 0.01 | 10.62 | 0.06 | 63.36 | 10.24 | 67.15 | |
均值 | 14.8(±3.29) | 510.56(±115.15) | 0.01(±0.01) | 14.06(±3.05) | 0.07(±0.07) | 66.33(±3.59) | 12.62(±2.51) | 68.5(±1.50) | |
C | 纯水 | — | — | — | — | — | — | — | — |
1 | EDENHOFER O, MADRUGA R P, SOKONA Y, et al. Climate change 2014: mitigation of climate change[M]. Cambridge (UK): Cambridge University Press, 2015: 46-48. |
2 | 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(4): 1430-1451. |
SANG Shuxun, YUAN Liang, LIU Shiqi, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 2022, 47(4): 1430-1451. | |
3 | 游小叶. 与瓦斯共——舞产学研联动, 谱瓦斯治理利用新曲[J]. 中国高新科技, 2022(3): 5-10. |
YOU Xiaoye. Dancing with gas—Industry-academia-research linkage, a new song of gas treatment and utilization [J] China High-Tech, 2022(3): 5-10. | |
4 | 黄中伟, 李国富, 杨睿月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238. |
HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212-3238. | |
5 | 吴强, 张保勇. THF-SDS对矿井瓦斯水合分离影响研究[J]. 中国矿业大学学报, 2010, 39(4): 484-489. |
WU Qiang, ZHANG Baoyong. The effect of THF-SDS on separation of methane-hydrate from mine gas[J]. Journal of China University of Mining & Technology, 2010, 39(4): 484-489. | |
6 | ZHANG Qiang, WU Qiang, ZHANG Hui, et al. Effect of montmorillonite on hydrate-based methane separation from mine gas[J]. Journal of Central South University, 2018, 25(1): 38-50. |
7 | 魏纳, 白睿玲, 周守为, 等. 碳达峰目标下中国深海天然气水合物开发战略[J]. 天然气工业, 2022, 42(2): 156-165. |
WEI Na, BAI Ruiling, ZHOU Shouwei, et al. China’s deepwater gas hydrate development strategies under the goal of carbon peak[J]. Natural Gas Industry, 2022, 42(2): 156-165. | |
8 | 李占东, 干毕成, 李中, 等. 天然气水合物降压开采与出砂实验研究[J]. 中国矿业大学学报, 2020, 49(6): 1128-1136. |
LI Zhandong, GAN Bicheng, LI Zhong, et al. An experimental study of natural gas hydrates sand production using depressurization[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1128-1136. | |
9 | 曹代勇, 李靖, 王丹, 等. 青海木里煤田天然气水合物稳定带研究[J]. 中国矿业大学学报, 2013, 42(1): 76-82. |
CAO Daiyong, LI Jing, WANG Dan, et al. Study of the gas hydrate stability zone in Muri Coalfield, Qinghai Province, China[J]. Journal of China University of Mining & Technology, 2013, 42(1): 76-82. | |
10 | LI Haoyang, LI Xiaosen, YU Yisong, et al. Morphologies, kinetics and structures of methane hydrate in the system containing tetrahydrofuran and cyclopentane[J]. Fuel, 2023, 340: 127585. |
11 | FU Juan, MO Jiamei, LIU Shijun, et al. Thermodynamic characteristics of methane hydrate formation in high-pressure microcalorimeter under different reaction kinetics[J]. Fuel, 2023, 332: 126072. |
12 | ZHANG Qiang, ZHENG Junjie, ZHANG Baoyong, et al. Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids[J]. Applied Energy, 2021, 287: 116576. |
13 | ZHENG Junjie, ZHANG Baoyong, WU Qiang, et al. Kinetic evaluation of cyclopentane as a promoter for CO2 capture via a clathrate process employing different contact modes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11913-11921. |
14 | ZHONG Dongliang, DARABOINA Nagu, ENGLEZOS Peter. Recovery of CH4 from coal mine model gas mixture (CH4/N2) by hydrate crystallization in the presence of cyclopentane[J]. Fuel, 2013, 106: 425-430. |
15 | SUN Qiang, GUO Xuqiang, LIU Aixian, et al. Experimental study on the separation of CH4 and N2 via hydrate formation in TBAB solution[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2284-2288. |
16 | ZHONG Dongliang, ENGLEZOS Peter. Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation[J]. Energy & Fuels, 2012, 26(4): 2098-2106. |
17 | ZHENG Junjie, BHATNAGAR Krittika, KHURANA Maninder, et al. Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives[J]. Applied Energy, 2018, 217: 377-389. |
18 | MOHAMMADI Abolfazl. The roles TBAF and SDS on the kinetics of methane hydrate formation as a cold storage material[J]. Journal of Molecular Liquids, 2020, 309: 113175. |
19 | VELUSWAMY Hari Prakash, LEE Pei Yit, PREMASINGHE Kulesha, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6145-6154. |
20 | 何京玲, 诸林. SDS和THF对水合物法捕集模拟烟气中CO2的影响[J]. 石油与天然气化工, 2019, 48(2): 63-69. |
HE Jingling, ZHU Lin. Effect of SDS and THF on CO2 captured from simulated flue gas by hydrate based gas separation[J]. Chemical Engineering of Oil & Gas, 2019, 48(2): 63-69. | |
21 | LI Xiaosen, XU Chungang, CHEN Zhaoyang, et al. Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns[J]. International Journal of Hydrogen Energy, 2012, 37(1): 720-727. |
22 | LI Xiaosen, XU Chungang, CHEN Zhaoyang, et al. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36(3): 1394-1403. |
23 | YANG Mingjun, ZHOU Hang, WANG Pengfei, et al. Effects of additives on continuous hydrate-based flue gas separation[J]. Applied Energy, 2018, 221: 374-385. |
24 | 王银, 赵建忠, 高强, 等. L-色氨酸+四氢呋喃体系下水合物法分离煤层气研究[J]. 化学工程, 2022, 50(5): 17-21, 24. |
WANG Yin, ZHAO Jianzhong, GAO Qiang, et al. Separation of coalbed methane by hydrates method in L-tryptophan+tetrahydrofuran system[J]. Chemical Engineering (China), 2022, 50(5): 17-21, 24. | |
25 | 吕秋楠, 李小森, 李刚, 等. 水合物法分离低浓度煤层气中的甲烷[J]. 过程工程学报, 2019, 19(6): 1129-1134. |
Qiunan LYU, LI Xiaosen, LI Gang, et al. Separation of methane from low concentration coal bed methane by hydrate-based process[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1129-1134. | |
26 | 王燕鸿, 姚凯, 郎雪梅, 等. 高含水油包水乳液的水合物储气性能研究[J]. 化工学报, 2021, 72(9): 4872-4880. |
WANG Yanhong, YAO Kai, LANG Xuemei, et al. Investigation on hydrate-based methane storage properties in water-in-oil emulsion with high water content[J]. CIESC Journal, 2021, 72(9): 4872-4880. | |
27 | VELUSWAMY Hari Prakash, KUMAR Rajnish, LINGA Praveen. Hydrogen storage in clathrate hydrates: Current state of the art and future directions[J]. Applied Energy, 2014, 122: 112-132. |
28 | GAIKWAD Namrata, BHATTACHARJEE Gaurav, SANGWAI Jitendra S, et al. Kinetic and morphology study of equimolar CO2-CH4 hydrate formation in the presence of cyclooctane and L-tryptophan[J]. Energy & Fuels, 2021, 35(1): 636-648. |
29 | BABU Ponnivalavan, KUMAR Rajnish, LINGA Praveen. A new porous material to enhance the kinetics of clathrate process: Application to precombustion carbon dioxide capture[J]. Environmental Science & Technology, 2013, 47(22): 13191-13198. |
30 | LINGA Praveen, ADEYEMO Adebola, ENGLEZOS Peter. Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide[J]. Environmental Science & Technology, 2008, 42(1): 315-320. |
31 | 徐纯刚, 李小森, 陈朝阳. 水合物法分离二氧化碳的研究现状[J]. 化工进展, 2011, 30(4): 701-708. |
XU Chungang, LI Xiaosen, CHEN Zhaoyang. Research on hydrate-based carbon dioxide separation[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 701-708. | |
32 | FAN Shuanshi, LI Shifeng, WANG Jingqu, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates[J]. Energy & Fuels, 2009, 23(8): 4202-4208. |
33 | SÁNCHEZ-MORA María F, GALICIA-LUNA Luis A, Alfredo PIMENTEL-RODAS, et al. Experimental determination of gas hydrates dissociation conditions in CO2/N2+ethanol/1-propanol/TBAB/TBAF+water systems[J]. Journal of Chemical & Engineering Data, 2019, 64(2): 763-770. |
34 | SLOAN E Dendy. Introductory overview: Hydrate knowledge development[J]. American Mineralogist, 2004, 89(8/9): 1155-1161. |
35 | ZHANG Jibao, LI Yan, YIN Zhenyuan, et al. Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage[J]. Chemical Engineering Journal, 2023, 467: 143459. |
36 | LIU Xuejian, LI Yan, CHEN Guangjin, et al. Coupling amino acid with THF for the synergistic promotion of CO2 hydrate micro kinetics: Implication for hydrate-based CO2 sequestration[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(15): 6057-6069. |
37 | ZHANG Qiang, ZHENG Junjie, ZHANG Baoyong, et al. Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids[J]. Energy, 2023, 274: 127322. |
38 | SUN Qiang, AZAMAT Amankulov, CHEN Bo, et al. The effects of alkyl polyglucosides on the formation of CH4 hydrate and separation of CH4/N2 via hydrates formation[J]. Separation Science and Technology, 2020, 55(1): 81-87. |
[1] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
[2] | HE Haixia, WAN Yameng, LI Fanfan, NIU Xinyu, ZHANG Jingwen, LI Tao, REN Baozeng. Kinetics and crystallization process of naphazoline hydrochloride in methanol-ethyl acetate system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4230-4245. |
[3] | YIN Chenyang, LIU Yongfeng, CHEN Ruizhe, ZHANG Lu, SONG Jin’ou, LIU Haifeng. Kinetic simulation of n-hexane pyrolysis reaction based on quantitative calculations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4273-4282. |
[4] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[5] | ZENG Wuqing, WANG Yu, BU Qingguo, MA Shuo, BAI Dongming, ZHANG Zongjian, ZHANG Peng, MA Dandan, WANG Shengbo, WANG Runqi, WU Liwen, LIU Chen, MA Hongting. Influence of mixed burning of aged refuse on the incineration characteristics of waste furnace [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4642-4653. |
[6] | HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. |
[7] | CAO Jingpei, YAO Naiyu, PANG Xinbo, ZHAO Xiaoyan, ZHAO Jingping, CAI Shijie, XU Min, FENG Xiaobo, YI Fengjiao. Research progress and development history of coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. |
[8] | GU Songqi, SUN Fanfei, WEI Yao, SONG Xingfei, NAN Bing, LI Lina, HUANG Yuying. Time-resolved thermochemical in-situ XAFS methodology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3747-3755. |
[9] | ZHANG Dongxu, LIU Cheng, SONG Lechun, HUANG Qiyu, WANG Wei. Nucleation process of gas hydrates in the emulsion system: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3007-3020. |
[10] | MA Dong, XIE Guilin, TIAN Zhihua, WANG Qinhui, ZHANG Jianguo, SONG Huilin, ZHONG Jin. Analysis of high temperature reduction process of phosphogypsum by coal gasification fine slag in fluidized bed [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3479-3491. |
[11] | ZHU Yanni, WANG Wei, SUN Yanchenhao, WEI Gang, ZHANG Dawei. Numerical simulation of centrifugal spray drying based on single-droplet evaporation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710. |
[12] | WANG Debin, LIN Mengyu, YANG Xue, DONG Dianquan. Preparation and adsorption properties of zinc-doped titanium-based cesium ion sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1953-1961. |
[13] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
[14] | HUANG Meng, SUN Zhigao, XU Wenchao, ZHANG Huanran, YANG Yang. Promotion of HCFC-141b hydrate production by lactone sophorolipids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1199-1205. |
[15] | HU Heng, XU Na, LI Ziliang, YU Jiapeng, LI Xu, ZHANG Wei. Kinetics and process optimization of synthesis of methyl ester sulfonate in T-type microreactor [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6634-6644. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |