Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3007-3020.DOI: 10.16085/j.issn.1000-6613.2023-0767
• Energy processes and technology • Previous Articles
ZHANG Dongxu1(), LIU Cheng1, SONG Lechun1, HUANG Qiyu2, WANG Wei1
Received:
2023-05-09
Revised:
2023-06-12
Online:
2024-07-02
Published:
2024-06-15
Contact:
ZHANG Dongxu
通讯作者:
张东旭
作者简介:
张东旭(1994—),男,博士,工程师,研究方向为管道流动保障及沥青基原油组分。E-mail:Dongxu_Henry_Zhang@163.com。
基金资助:
CLC Number:
ZHANG Dongxu, LIU Cheng, SONG Lechun, HUANG Qiyu, WANG Wei. Nucleation process of gas hydrates in the emulsion system: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3007-3020.
张东旭, 刘成, 宋乐春, 黄启玉, 王唯. 乳状液体系中气体水合物成核过程研究进展[J]. 化工进展, 2024, 43(6): 3007-3020.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0767
计算依据 | 量化指标 | 表达式 | 方法特点 | 应用实例 |
---|---|---|---|---|
基于温度 | 生成温度 | Tn | ①用于降温水合物生成体系;②需借助温度传感器 | Daraboina等 |
过冷度 | ΔT=Teq-Tn | ①多用于降温水合物生成体系;②需借助温度传感器;③需进行操作压力下平衡温度的计算 | Stoporev等 | |
基于压力 | 生成压力 | Pn | ①用于升压水合物生成体系;②需借助压力传感器 | Wang等 |
过饱和度 | Sp=Pn/Peq | ①多用于升压水合物生成体系;②需借助压力传感器;③需进行操作温度下平衡压力的计算 | 王唯 | |
基于时间 | 生成时间 | tn | ①相同条件下较短的生成时间反映较快的成核速率;②降温和升压水合物生成体系均适用;③水合物生成识别可借助温度和压力等多种参数 | Zhang等 |
诱导期 | tind=te-ts | ①相同条件下较短的诱导期反映较快的成核速率;②适用于大部分水合物生成方法和实验装置;③应用最为广泛 | Prasad等 |
计算依据 | 量化指标 | 表达式 | 方法特点 | 应用实例 |
---|---|---|---|---|
基于温度 | 生成温度 | Tn | ①用于降温水合物生成体系;②需借助温度传感器 | Daraboina等 |
过冷度 | ΔT=Teq-Tn | ①多用于降温水合物生成体系;②需借助温度传感器;③需进行操作压力下平衡温度的计算 | Stoporev等 | |
基于压力 | 生成压力 | Pn | ①用于升压水合物生成体系;②需借助压力传感器 | Wang等 |
过饱和度 | Sp=Pn/Peq | ①多用于升压水合物生成体系;②需借助压力传感器;③需进行操作温度下平衡压力的计算 | 王唯 | |
基于时间 | 生成时间 | tn | ①相同条件下较短的生成时间反映较快的成核速率;②降温和升压水合物生成体系均适用;③水合物生成识别可借助温度和压力等多种参数 | Zhang等 |
诱导期 | tind=te-ts | ①相同条件下较短的诱导期反映较快的成核速率;②适用于大部分水合物生成方法和实验装置;③应用最为广泛 | Prasad等 |
文献 | 研究装置 | 油相 | 气相 | 诱导期起始时刻 | 诱导期结束时刻 |
---|---|---|---|---|---|
Kakati等 | 高压搅拌釜 | 原油 | CH4 | 体系开始降温 | 温度突变 |
Zi等 | 高压搅拌釜 | 正庚烷/甲苯 | CH4 | 体系开始降温 | 压力突变 |
Ning等 | 高压搅拌釜 | 矿物油 | CH4 | 体系开始降温 | 温度突变 |
Wang等 | 高压搅拌釜 | 柴油 | CO2 | 体系降温至平衡状态 | 温度突变 |
Lyu等 | 高压环道 | 柴油 | 天然气 | 体系降温至平衡状态 | 温度突变 |
Zhang等 | 高压搅拌釜 | 矿物油 | CO2 | 压力升高至平衡状态 | 压力突变 |
Mu | 高压蓝宝石釜 | 柴油 | CH4 | 体系参数稳定 | 压力突变 |
Zheng等 | 高压搅拌釜 | 柴油 | CO2 | 体系参数稳定 | 黏度突变 |
Ning等 | 高压搅拌釜 | 矿物油 | CH4 | 体系压力饱和 | 压力突变 |
文献 | 研究装置 | 油相 | 气相 | 诱导期起始时刻 | 诱导期结束时刻 |
---|---|---|---|---|---|
Kakati等 | 高压搅拌釜 | 原油 | CH4 | 体系开始降温 | 温度突变 |
Zi等 | 高压搅拌釜 | 正庚烷/甲苯 | CH4 | 体系开始降温 | 压力突变 |
Ning等 | 高压搅拌釜 | 矿物油 | CH4 | 体系开始降温 | 温度突变 |
Wang等 | 高压搅拌釜 | 柴油 | CO2 | 体系降温至平衡状态 | 温度突变 |
Lyu等 | 高压环道 | 柴油 | 天然气 | 体系降温至平衡状态 | 温度突变 |
Zhang等 | 高压搅拌釜 | 矿物油 | CO2 | 压力升高至平衡状态 | 压力突变 |
Mu | 高压蓝宝石釜 | 柴油 | CH4 | 体系参数稳定 | 压力突变 |
Zheng等 | 高压搅拌釜 | 柴油 | CO2 | 体系参数稳定 | 黏度突变 |
Ning等 | 高压搅拌釜 | 矿物油 | CH4 | 体系压力饱和 | 压力突变 |
研究者 | 量化方法 | 研究装置 | 油相 | 气相 | 扰动强度 | 主要结论 |
---|---|---|---|---|---|---|
Lyu等 | 诱导期 | 高压环道 | 柴油 | 天然气 | 840~1820kg/h | 水合物诱导期随流速升高先减小后增大 |
Li等 | 诱导期 | 高压搅拌釜 | 癸烷 | CH4 | 300~1100r/min | 水合物诱导期随搅拌速率升高先减小后增大 |
Zheng等 | 诱导期 | 高压搅拌釜 | 柴油 | CO2 | 100~600r/min | |
Zhang等 | 成核时间 | 高压搅拌釜 | 含蜡柴油 | CO2 | 200~600r/min | 搅拌速率升高促进水合物成核 |
宋光春等 | 诱导期 | 高压搅拌釜 | 柴油 | 天然气 | 100~300r/min | |
Stoporev等 | 过冷度 | 高压搅拌釜 | 癸烷/原油 | C1~C3混合/CH4 | 100~600r/min | 搅拌速率与成核温度无显著关系 |
Zhang等 | 诱导期 | 高压搅拌釜 | 含沥青质矿物油 | CO2 | 100~400r/min | 搅拌速率的升高缩短水合物诱导期 |
Dai等 | 诱导期 | 高压搅拌釜 | 正十二烷 | CO2 | 300~500r/min |
研究者 | 量化方法 | 研究装置 | 油相 | 气相 | 扰动强度 | 主要结论 |
---|---|---|---|---|---|---|
Lyu等 | 诱导期 | 高压环道 | 柴油 | 天然气 | 840~1820kg/h | 水合物诱导期随流速升高先减小后增大 |
Li等 | 诱导期 | 高压搅拌釜 | 癸烷 | CH4 | 300~1100r/min | 水合物诱导期随搅拌速率升高先减小后增大 |
Zheng等 | 诱导期 | 高压搅拌釜 | 柴油 | CO2 | 100~600r/min | |
Zhang等 | 成核时间 | 高压搅拌釜 | 含蜡柴油 | CO2 | 200~600r/min | 搅拌速率升高促进水合物成核 |
宋光春等 | 诱导期 | 高压搅拌釜 | 柴油 | 天然气 | 100~300r/min | |
Stoporev等 | 过冷度 | 高压搅拌釜 | 癸烷/原油 | C1~C3混合/CH4 | 100~600r/min | 搅拌速率与成核温度无显著关系 |
Zhang等 | 诱导期 | 高压搅拌釜 | 含沥青质矿物油 | CO2 | 100~400r/min | 搅拌速率的升高缩短水合物诱导期 |
Dai等 | 诱导期 | 高压搅拌釜 | 正十二烷 | CO2 | 300~500r/min |
1 | SLOAN E Dendy. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-363. |
2 | 周诗岽, 陈小康, 边慧, 等. CO2水合物在管道中的生成及堵塞特性[J]. 化工进展, 2018, 37(11): 4250-4256. |
ZHOU Shidong, CHEN Xiaokang, BIAN Hui, et al. CO2 hydrate formation in pipeline and its plugging characteristics[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4250-4256. | |
3 | WANG Wei, HUANG Qiyu, HU Sijia, et al. Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties[J]. Energy & Fuels, 2020, 34(2): 1482-1491. |
4 | 宫敬, 史博会, 陈玉川, 等. 含天然气水合物的海底多相管输及其堵塞风险管控[J]. 天然气工业, 2020,40(12): 133-142. |
GONG Jing, SHI Bohui, CHEN Yuchuan, et al. Submarine multiphase pipeline transport containing natural gas hydrate and its plugging risk prevention and control[J]. Natural Gas Industry, 2020, 40(12): 133-142. | |
5 | JING Jiaqiang, ZHUANG Lequan, KARIMOV R, et al. Investigation of natural gas hydrate formation and slurry viscosity in non-emulsifying oil systems[J]. Chemical Engineering Research and Design, 2023, 190: 687-703. |
6 | ZHENG Haimin, HUANG Qiyu, WANG Wei, et al. Induction time of hydrate formation in water-in-oil emulsions[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8330-8339. |
7 | XIAO Yanyun, ZHOU Shidong, LI Xiaoyan, et al. Kinetic properties of CO2 hydrate formation in the wax-containing system at different concentrations[J]. Energy & Fuels, 2023, 37(4): 2972-2982. |
8 | 李清平, 孙钦, 程兵, 等. 陵水17-2气田深水水下生产系统工程设计关键技术[J]. 中国海上油气, 2021, 33(3): 180-188. |
LI Qingping, SUN Qin, CHENG Bing, et al. Key technologies for engineering design of deep water subsea production system in L S 17-2 gas field[J]. China Offshore Oil and Gas, 2021, 33(3): 180-188. | |
9 | ZHANG Dongxu, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax crystals on nucleation during gas hydrate formation[J]. Energy & Fuels, 2019, 33(6): 5081-5090. |
10 | CAO Xuewen, YANG Kairan, BIAN Jiang. Investigation of CO2 hydrate slurry flow characteristics with particle dissociation for carbon storage and transportation[J]. Process Safety and Environmental Protection, 2021, 152: 427-440. |
11 | KIM Shol, LEE Seong Hyuk, KANG Yong Tae. Characteristics of CO2 hydrate formation/dissociation in H2O+THF aqueous solution and estimation of CO2 emission reduction by district cooling application[J]. Energy, 2017, 120: 362-373. |
12 | 樊栓狮, 尤莎莉, 郎雪梅, 等. 笼型水合物膜分离和捕获二氧化碳研究进展[J]. 化工进展, 2020, 39(4): 1211-1218. |
FAN Shuanshi, YOU Shali, LANG Xuemei, et al. Separation and capture carbon dioxide by clathrate-hydrate membranes: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1211-1218. | |
13 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2020. |
CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2020. | |
14 | 郑海敏. 水合物在油-气-水-蜡多相体系中诱导与生长过程研究[D]. 北京: 中国石油大学(北京), 2018. |
ZHENG Haimin. Study on induction and growth process of hydrate in oil-gas-water-wax multiphase system[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
15 | CHEN Yuchuan, SHI Bohui, LIU Yang, et al. Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions[J]. Energy & Fuels, 2018, 32(9): 9081-9092. |
16 | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems[J]. Fuel, 2015, 148: 186-190. |
17 | ZI Mucong, WU Guozhong, WANG Jiang, et al. Investigation of gas hydrate formation and inhibition in oil-water system containing model asphaltene[J]. Chemical Engineering Journal, 2021, 412: 128452. |
18 | STOPOREV Andrey S, SEMENOV Anton P, MEDVEDEV Vladimir I, et al. Formation and agglomeration of gas hydrates in gas-organic liquid-water systems in a stirred reactor: Role of resins/asphaltenes/surfactants[J]. Journal of Petroleum Science and Engineering, 2019, 176: 952-961. |
19 | WANG Wei, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax on hydrate formation in water-in-oil emulsions[J]. Journal of Dispersion Science and Technology, 2020, 41(12): 1821-1830. |
20 | ZHANG Dongxu, HUANG Qiyu, LI Rongbin, et al. Nucleation and growth of gas hydrates in emulsions of water in asphaltene-containing oils[J]. Energy & Fuels, 2021, 35(7): 5853-5866. |
21 | 王唯. 含蜡油包水乳状液体系水合物生成及聚集机理研究[D]. 北京: 中国石油大学(北京), 2020. |
WANG Wei. Study on hydrate formation and aggregation mechanism of water-in-oil emulsion system containing wax oil[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
22 | SANDOVAL Gustavo A B, THOMPSON Roney L, Cristina M S SAD, et al. Influence of adding asphaltenes and gas condensate on CO2 hydrate formation in water-CO2-oil systems[J]. Energy & Fuels, 2019, 33(8): 7138-7146. |
23 | SHARIFI Hassan, RIPMEESTER John, WALKER Virginia K, et al. Kinetic inhibition of natural gas hydrates in saline solutions and heptane[J]. Fuel, 2014, 117: 109-117. |
24 | PRASAD Siddhant Kumar, NAIR Vishnu Chandrasekharan, SANGWAI Jitendra S. Effect of asphaltenes on the kinetics of methane hydrate formation and dissociation in oil-in-water dispersion systems containing light saturated and aromatic hydrocarbons[J]. Energy & Fuels, 2021, 35(21): 17410-17423. |
25 | LYU X F, SHI B H, WANG Y, et al. Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop[J]. Oil & Gas Science and Technology: Revue D’IFP Energies Nouvelles, 2015, 70(6): 1111-1124. |
26 | DALMAZZONE D, HAMED N, DALMAZZONE Christine, et al. Application of high pressure DSC to the kinetics of formation of methane hydrate in water-in-oil emulsion[J]. Journal of Thermal Analysis and Calorimetry, 2006, 85(2): 361-368. |
27 | KASHCHIEV Dimo, FIROOZABADI Abbas. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250(3/4): 499-515. |
28 | WALSH Matthew R, Carolyn A KOH, SLOAN E Dendy, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth[J]. Science, 2009, 326(5956): 1095-1098. |
29 | ZHANG Zhengcai, WU Nengyou, LIU Changling, et al. Molecular simulation studies on natural gas hydrates nucleation and growth: A review[J]. China Geology, 2022, 5: 330-344. |
30 | PRASAD Siddhant Kumar, SANGWAI Jitendra S. Impact of lighter alkanes on the formation and dissociation kinetics of methane hydrate in oil-in-water dispersions relevant for flow assurance[J]. Fuel, 2023, 333: 126500. |
31 | KAKATI Himangshu, KAR Shranish, MANDAL Ajay, et al. Methane hydrate formation and dissociation in oil-in-water emulsion[J]. Energy & Fuels, 2014, 28(7): 4440-4446. |
32 | NING Yuanxing, LI Yuxing, SONG Guangchun, et al. Investigation on hydrate formation and growth characteristics in dissolved asphaltene-containing water-in-oil emulsion[J]. Langmuir, 2021, 37(37): 11072-11083. |
33 | ZHANG Dongxu, HUANG Qiyu, LI Rongbin, et al. Effects of waxes on hydrate behaviors in water-in-oil emulsions containing asphaltenes[J]. Chemical Engineering Science, 2021, 244: 116831. |
34 | Xiaofang LYU, ZHANG Jie, ZHAO Yi, et al. Experimental study of the growth kinetics of natural gas hydrates in an oil-water emulsion system[J]. ACS Omega, 2022, 7(1): 599-616. |
35 | LIU Yang, SHI Bohui, DING Lin, et al. Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer[J]. Fuel, 2019, 244: 282-295. |
36 | ZHANG Dongxu, HUANG Qiyu, WANG Wei, et al. Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103799. |
37 | MU Liang, LI Shi, MA Qinglan, et al. Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion[J]. Fluid Phase Equilibria, 2014, 362: 28-34. |
38 | NING Fulong, GUO Dongdong, DIN Shahab Ud, et al. The kinetic effects of hydrate anti-agglomerants/surfactants[J]. Fuel, 2022, 318: 123566. |
39 | TONG Shikun, LI Pengfei, Fengjun LYU, et al. Promotion and inhibition effects of wax on methane hydrate formation and dissociation in water-in-oil emulsions[J]. Fuel, 2023, 337: 127211. |
40 | SHI Lingli, LI Junhui, HE Yong, et al. Memory effect test and analysis in methane hydrates reformation process[J]. Energy, 2023, 272: 127153. |
41 | LI Rong, SUN Zhigao. Improving C2H3Cl2F hydrate formation for cold storage in the presence of amino acids[J]. Journal of Energy Storage, 2023, 59: 106505. |
42 | SAGIDULLIN A K, STOPOREV A S, A Yu MANAKOV. Effect of temperature on the rate of methane hydrate nucleation in water-in-crude oil emulsion[J]. Energy & Fuels, 2019, 33(4): 3155-3161. |
43 | 张庆东, 李玉星, 王武昌, 等. 温度对甲烷水合物形成过程影响的分子动力学模拟[J]. 油气储运, 2015, 34(12): 1288-1294. |
ZHANG Qingdong, LI Yuxing, WANG Wuchang, et al. Molecular dynamics simulation of the influence of temperature on the formation of methane hydrate[J]. Oil & Gas Storage and Transportation, 2015, 34(12): 1288-1294. | |
44 | LI Xingang, CHEN Chao, CHEN Yingnan, et al. Kinetics of methane clathrate hydrate formation in water-in-oil emulsion[J]. Energy & Fuels, 2015, 29(4): 2277-2288. |
45 | 宋光春, 施政灼, 李玉星, 等. 油水体系内水合物的生成:温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(3): 1338-1345. |
SONG Guangchun, SHI Zhengzhuo, LI Yuxing, et al. Hydrate formation in oil-water systems: Investigations of the influences of temperature, pressure and rotation rate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1338-1345. | |
46 | DAI Mengling, SUN Zhigao, SONG Jia, et al. Effect of liquid alkane on carbon dioxide hydrate formation[J]. Fuel, 2022, 323: 124335. |
47 | DING Kun, ZHONG Dongliang, LU Yiyu, et al. Enhanced precombustion capture of carbon dioxide by gas hydrate formation in water-in-oil emulsions[J]. Energy & Fuels, 2015, 29(5): 2971-2978. |
48 | 周诗岽, 于雪薇, 江坤, 等. 蜡晶析出对天然气水合物生成动力学特性的影响[J]. 天然气工业, 2018, 38(3): 103-109. |
ZHOU Shidong, YU Xuewei, JIANG Kun, et al. Effect of wax crystal precipitation on kinetic characteristics of natural gas hydrate formation[J]. Natural Gas Industry, 2018, 38(3): 103-109. | |
49 | SONG Guangchun, NING Yuanxing, LI Yuxing, et al. Investigation on hydrate growth at the oil–water interface: In the presence of wax and kinetic hydrate inhibitor[J]. Langmuir, 2020, 36(48): 14881-14891. |
50 | 张东旭, 伍奕, 杨明, 等. 重质原油组分对水合物生成影响的研究进展[J]. 油气储运, 2022, 41(3): 264-271. |
ZHANG Dongxu, WU Yi, YANG Ming, et al. Research progress on the effect of heavy crude oil components on hydrate formation[J]. Oil & Gas Storage and Transportation, 2022, 41(3): 264-271. | |
51 | LIU Jia, WANG Jing, DONG Ti, et al. Effects of wax on CH4 hydrate formation and agglomeration in oil-water emulsions[J]. Fuel, 2022, 322: 124128. |
52 | PENG Zeheng, WANG Wei, CHENG Lin, et al. Effect of the ethylene vinyl acetate copolymer on the induction of cyclopentane hydrate in a water-in-waxy oil emulsion system[J]. Langmuir, 2021, 37(45): 13225-13234. |
53 | CHENG Xianwen, HUANG Qiyu, ZHANG Dongxu, et al. Influence of asphaltene polarity on hydrate behaviors in water-in-oil emulsions[J]. Energy & Fuels, 2022, 36(1): 239-250. |
54 | WANG Yijie, HUANG Qiyu, ZHANG Dongxu, et al. Influence of asphaltenes on hydrate formation and decomposition in water-in-waxy oil emulsions[J]. Energy & Fuels, 2022, 36(24): 14710-14722. |
55 | ZHANG Jie, LI Chuanxian, YANG Fei, et al. Study on the influence mechanism of the interaction between waxes and asphaltenes on hydrate growth[J]. Fuel, 2023, 338: 127322. |
56 | YEGYA RAMAN Ashwin Kumar, AICHELE Clint P. Effect of particle hydrophobicity on hydrate formation in water-in-oil emulsions in the presence of wax[J]. Energy & Fuels, 2017, 31(5): 4817-4825. |
57 | 胡倩, 周诗岽, 郭宇, 等. 蜡晶析出对CO2水合物相平衡及诱导特性的影响[J]. 化工进展, 2021, 40(5): 2452-2460. |
HU Qian, ZHOU Shidong, GUO Yu, et al. Influence of wax crystal precipitation on the phase equilibrium and induction characteristics of CO2 hydrate[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2452-2460. | |
58 | LI Zhi, LIU Bei, GONG Yinghua, et al. Molecular dynamics simulation to explore the impact of wax crystal on the formation of methane hydrate[J]. Journal of Molecular Liquids, 2022, 350: 118229. |
59 | LIAO Qingyun, SHI Bohui, SONG Shangfei, et al. Molecular insights into methane hydrate growth in the presence of wax molecules[J]. Fuel, 2022, 324: 124743. |
60 | CHEN Jun, YAN Kele, JIA Menglei, et al. Memory effect test of methane hydrate in water + diesel oil + sorbitan monolaurate dispersed systems[J]. Energy & Fuels, 2013, 27(12): 7259-7266. |
61 | OSHIMA Motoi, SHIMADA Wataru, HASHIMOTO Shunsuke, et al. Memory effect on semi-clathrate hydrate formation: A case study of tetragonal tetra-n-butyl ammonium bromide hydrate[J]. Chemical Engineering Science, 2010, 65(20): 5442-5446. |
62 | THOMPSON Helen, SOPER Alan K, BUCHANAN Piers, et al. Methane hydrate formation and decomposition: Structural studies via neutron diffraction and empirical potential structure refinement[J]. The Journal of Chemical Physics, 2006, 124(16): 164508. |
63 | Mark RODGER P. Methane hydrate: Melting and memory[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 474-482. |
64 | UCHIDA Tsutomu, EBINUMA Toshiro, NARITA Hideo. Observations of CO2-hydrate decomposition and reformation processes[J]. Journal of Crystal Growth, 2000, 217(1/2): 189-200. |
65 | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation[J]. Fuel, 2015, 139: 554-560. |
66 | MU Liang, VON SOLMS Nicolas. Inhibition of natural gas hydrate in the system containing salts and crude oil[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106940. |
67 | 闫柯乐, 孙长宇, 张红星, 等. 水合物动力学抑制剂在油水体系内抑制性能实验研究[J]. 科学技术与工程, 2016, 16(18): 170-175. |
YAN KeLe, SUN Changyu, ZHANG Hongxing, et al. Experimental study on inhibition performance of hydrate kinetic inhibitor in oil-water system[J]. Science Technology and Engineering, 2016, 16(18): 170-175. | |
68 | FARHADIAN Abdolreza, ZHAO Yang, NAEIJI Parisa, et al. Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines[J]. Energy, 2023, 269: 126797. |
69 | LIAO Bo, WANG Jintang, SUN Jinsheng, et al. Microscopic insights into synergism effect of different hydrate inhibitors on methane hydrate formation: Experiments and molecular dynamics simulations[J]. Fuel, 2023, 340: 127488. |
70 | YI Lizhi, ZHAO Lili, TAO Shunhui. Methane hydrate formation in an oil-water system in the presence of lauroylamide propylbetaine[J]. RSC Advances, 2020, 10(21): 12255-12261. |
71 | LEDERHOS J P, LONG J P, SUM A, et al. Effective kinetic inhibitors for natural gas hydrates[J]. Chemical Engineering Science, 1996, 51(8): 1221-1229. |
72 | CARVER Tim J, DREW Michael G B, MARK RODGER P. Molecular dynamics calculations of N-methylpyrrolidone in liquid water[J]. Physical Chemistry Chemical Physics, 1999, 1(8): 1807-1816. |
73 | YANG Jinhai, TOHIDI Bahman. Characterization of inhibition mechanisms of kinetic hydrate inhibitors using ultrasonic test technique[J]. Chemical Engineering Science, 2011, 66(3): 278-283. |
74 | XU Shurui, FAN Shuanshi, FANG Songtian, et al. Pectin as an extraordinary natural kinetic hydrate inhibitor[J]. Scientific Reports, 2016, 6: 23220. |
75 | KASHCHIEV Dimo, FIROOZABADI Abbas. Nucleation of gas hydrates[J]. Journal of Crystal Growth, 2002, 243(3/4): 476-489. |
76 | JENSEN Lars, THOMSEN Kaj, VON SOLMS Nicolas. Propane hydrate nucleation: Experimental investigation and correlation[J]. Chemical Engineering Science, 2008, 63(12): 3069-3080. |
77 | 柳扬. 蜡与水合物共存W/O体系流动及沉积规律研究[D]. 北京: 中国石油大学(北京), 2019. |
LIU Yang. Study on flow and deposition law of wax and hydrate coexisting W/O system[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
78 | KANG Seong-Pil, SHIN Ju-Young, Jong-Se LIM, et al. Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor[J]. Chemical Engineering Science, 2014, 116: 817-823. |
79 | AGHAJANLOO Mahnaz, REZA EHSANI Mohammad, TAHERI Zahra, et al. Kinetics of methane+hydrogen sulfide clathrate hydrate formation in the presence/absence of poly N-vinyl pyrrolidone (PVP) and L-tyrosine: Experimental study and modeling of the induction time[J]. Chemical Engineering Science, 2022, 250: 117384. |
[1] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[2] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[3] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[4] | LI Qingping, HUANG Ting, SHI Bohui, PANG Weixin, CHEN Yuchuan, GONG Jing. Reformation rules of methane hydrates in the presence of fine-grain sand and salt [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6251-6258. |
[5] | MA Xiaojuan, WANG Yufei, FENG Xiao. Energy system optimization of natural gas hydrate mining platform [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1667-1676. |
[6] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[7] | FU Weiqi, ZHAO Zixian, YU Jing, WEI Wei, WANG Zhiyuan, HUANG Bingxiang. Prediction model of hydrate formation in bubbly flow and experimental study [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5746-5754. |
[8] | MAO Gangtao, LI Zhiping, WANG Kai, DING Yao. Analysis of the characteristics of the formation and dissociation of carbon dioxide hydrate in the fully visualized reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5363-5372. |
[9] | ZHANG Xuemin, ZHANG Shanling, LI Pengyu, HUANG Tingting, YIN Shaoqi, LI Jinping, WANG Yingmei. Research progress on influencing factors and strengthening mechanism of CO2-CH4 hydrate replacement in porous media system [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5259-5271. |
[10] | ZHANG Xuemin, ZHANG Mengjun, YANG Huijie, LI Yinhui, LI Jinping, WANG Yingmei. Research progress on formation kinetics of gas hydrate in porous media below freezing point [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 101-108. |
[11] | HU Qian, ZHOU Shidong, GUO Yu, ZHANG Xueyan, WANG Jiaojiao, WANG Guodong, JI Haoyang. Influence of wax crystal precipitation on the phase equilibrium and induction characteristics of CO2 hydrate [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2452-2460. |
[12] | Ting HUANG, Changjun LI, Ling DING, Qingping LI, M Aman ZACHARY. Study on methane hydrate formation and decomposition characteristics in gas-water system [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2954-2961. |
[13] | Ting HUANG, Changjun LI, Qingping LI, Ling DING, AMAN Zachary M. Experiment on methane hydrate kinetics in a high-pressure transparent autoclave [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2624-2631. |
[14] | Chengyuan HE,Shidong ZHOU,Tiancheng QIN,Wenwen ZHANG,Xiaofang LÜ,Shuli WANG,Haoyang JI. Induction characteristics of carbon dioxide hydrate formation under intermittent flow [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1348-1356. |
[15] | Wenjun XIE,Xiaosen LI,Yingnan ZOU,Chungang XU. Characteristics of carbon dioxide hydrate formation and decomposition with the system of cyclopentane [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 129-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |