Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 2996-3006.DOI: 10.16085/j.issn.1000-6613.2023-0889
• Chemical processes and equipment • Previous Articles
JING Peiyu1(), ZHU Yu1, SUN Jie1,2(), HUANG Wanni1, GUO Yuying1, WANG Yating3, ZHENG Zhiyi1, DING Wei1
Received:
2023-05-30
Revised:
2023-10-19
Online:
2024-07-02
Published:
2024-06-15
Contact:
SUN Jie
敬佩瑜1(), 朱宇1, 孙杰1,2(), 黄婉妮1, 郭雨莹1, 王娅婷3, 郑智益1, 丁伟1
通讯作者:
孙杰
作者简介:
敬佩瑜(1991—),女,硕士,主要从事油气储运工程实验教学与科研工作。E-mail:winkok@163.com。
基金资助:
CLC Number:
JING Peiyu, ZHU Yu, SUN Jie, HUANG Wanni, GUO Yuying, WANG Yating, ZHENG Zhiyi, DING Wei. Analysis of drag reduction characteristics of water ring transportation in high viscosity oil horizontal pipeline[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2996-3006.
敬佩瑜, 朱宇, 孙杰, 黄婉妮, 郭雨莹, 王娅婷, 郑智益, 丁伟. 水平管内高黏油水环输送减阻特性分析[J]. 化工进展, 2024, 43(6): 2996-3006.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0889
输送方法 | 掺稀法 | 加热法 | 乳化法 | 低黏液环法 | 油品改质 |
---|---|---|---|---|---|
流动稳定性 | 高 | 高 | 取决于 乳化程度 | 流动条件 决定 | 高 |
所需管径 | 较大 | 正常 | 较大 | 正常 | 正常 |
压降 | 高 | 中等 | 中等 | 低 | 中等 |
管壁腐蚀 | 无 | 无 | 潜在风险 | 潜在风险 | 无 |
额外设施投资 | 高 | 高 | 正常 | 正常 | 高 |
输送方法 | 掺稀法 | 加热法 | 乳化法 | 低黏液环法 | 油品改质 |
---|---|---|---|---|---|
流动稳定性 | 高 | 高 | 取决于 乳化程度 | 流动条件 决定 | 高 |
所需管径 | 较大 | 正常 | 较大 | 正常 | 正常 |
压降 | 高 | 中等 | 中等 | 低 | 中等 |
管壁腐蚀 | 无 | 无 | 潜在风险 | 潜在风险 | 无 |
额外设施投资 | 高 | 高 | 正常 | 正常 | 高 |
作者 | 管道系统 | 核心流体 | 流速范围/m·s-1 | 测量参数 | DR/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
管径/mm | 管长/m | 管道走向 | 管道材质 | 介质 | 黏度/mPa·s | 密度/kg·m-3 | ||||
Bensakhria等[ (2004) | 25 | 12 | 水平 | 不锈钢 | 稠油 | 4740(19.7℃) | 800 | Uos:0.13~0.19 Uws:0.0052~0.019 | 压力梯度 | 90 |
Sotgia等[ (2008) | 21~40 | 10 | 水平 | 有机玻璃 | 矿物油 | 919(20℃) | 889(20℃) | Uos:0.19~0.97 Uws:0.03~3.15 | 压力梯度 | 98 |
21.5~40 | 耐热玻璃 | Uos:0.17~0.94 Uws:0.03~2.43 | ||||||||
Herrera等[ (2009) | 12.7 | 12 | 水平 | 不锈钢 | 稠油 | 100(70℃) | — | Uos:1.99~2.82 Uws:0.24 | 压力梯度 | 98 |
Rodriguez等[ (2009) | 77 | 274 | 水平 | 钢 | 超稠油 | 36950(20℃) | 972.1(20℃) | Uos:0.8~1.1 Uws:0.76~2.40 | 压力梯度 | 99 |
黄树凤等[ (2011) | 96 | 200 | 水平 | 不锈钢 | 超稠油 | 5139(80℃) | 977(20℃) | Uos:0.05~0.11 Uws:0.002~0.015 | 压力梯度 | 95 |
Luo等[ (2017) | 25.8 | 30.8 | 水平 | 不锈钢 | 超重质油 | 11232.8(50℃) | 964.19(50℃) | Um:0.10~1.00 Uw:0~0.9 | 压力梯度 | 62 |
Ingen Housz等[ (2017) | 21 | 7.5 | 水平 | PVC | 润滑油 | 2142.5(20℃) | 857 | Uos:0.72~1.15 Uws:0.04~0.29 | 压力梯度 | 99 |
吴君强等[ (2019) | 19 | 10.5 | 水平 | 有机玻璃 | 润滑油 | 70(25℃) | 850(25℃) | Uos:0.8~1.6 Uws:0.8~1.6 | 压力梯度 | 88 |
van Duin等[ (2019) | 21 | 7.5 | 水平 | PVC | 润滑油 | 2739~358 (20~50℃) | 913~895 (20~50℃) | Uos:1.01 Uws:0.1~0.34 | 压力梯度 | 99 |
Jing等[ (2021) | 25 | 4.2 | 水平 | PVC | 白油 | 1055.3(20℃) | 902(20℃) | Uos:0.36~0.96 Uws:0.13~0.48 | 压力梯度 | 98 |
作者 | 管道系统 | 核心流体 | 流速范围/m·s-1 | 测量参数 | DR/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
管径/mm | 管长/m | 管道走向 | 管道材质 | 介质 | 黏度/mPa·s | 密度/kg·m-3 | ||||
Bensakhria等[ (2004) | 25 | 12 | 水平 | 不锈钢 | 稠油 | 4740(19.7℃) | 800 | Uos:0.13~0.19 Uws:0.0052~0.019 | 压力梯度 | 90 |
Sotgia等[ (2008) | 21~40 | 10 | 水平 | 有机玻璃 | 矿物油 | 919(20℃) | 889(20℃) | Uos:0.19~0.97 Uws:0.03~3.15 | 压力梯度 | 98 |
21.5~40 | 耐热玻璃 | Uos:0.17~0.94 Uws:0.03~2.43 | ||||||||
Herrera等[ (2009) | 12.7 | 12 | 水平 | 不锈钢 | 稠油 | 100(70℃) | — | Uos:1.99~2.82 Uws:0.24 | 压力梯度 | 98 |
Rodriguez等[ (2009) | 77 | 274 | 水平 | 钢 | 超稠油 | 36950(20℃) | 972.1(20℃) | Uos:0.8~1.1 Uws:0.76~2.40 | 压力梯度 | 99 |
黄树凤等[ (2011) | 96 | 200 | 水平 | 不锈钢 | 超稠油 | 5139(80℃) | 977(20℃) | Uos:0.05~0.11 Uws:0.002~0.015 | 压力梯度 | 95 |
Luo等[ (2017) | 25.8 | 30.8 | 水平 | 不锈钢 | 超重质油 | 11232.8(50℃) | 964.19(50℃) | Um:0.10~1.00 Uw:0~0.9 | 压力梯度 | 62 |
Ingen Housz等[ (2017) | 21 | 7.5 | 水平 | PVC | 润滑油 | 2142.5(20℃) | 857 | Uos:0.72~1.15 Uws:0.04~0.29 | 压力梯度 | 99 |
吴君强等[ (2019) | 19 | 10.5 | 水平 | 有机玻璃 | 润滑油 | 70(25℃) | 850(25℃) | Uos:0.8~1.6 Uws:0.8~1.6 | 压力梯度 | 88 |
van Duin等[ (2019) | 21 | 7.5 | 水平 | PVC | 润滑油 | 2739~358 (20~50℃) | 913~895 (20~50℃) | Uos:1.01 Uws:0.1~0.34 | 压力梯度 | 99 |
Jing等[ (2021) | 25 | 4.2 | 水平 | PVC | 白油 | 1055.3(20℃) | 902(20℃) | Uos:0.36~0.96 Uws:0.13~0.48 | 压力梯度 | 98 |
数据来源 | D/mm | μo/mPa·s | ρo/kg·m-3 | Qo/m3·h-1 | Qw/m3·h-1 |
---|---|---|---|---|---|
Sotgia | 26 | 919 | 889 | 0.19~1.91 | 0.19~4.78 |
本实验 | 25 | 1178.3 | 882 | 0.65~1.57 | 0.09~2.13 |
数据来源 | D/mm | μo/mPa·s | ρo/kg·m-3 | Qo/m3·h-1 | Qw/m3·h-1 |
---|---|---|---|---|---|
Sotgia | 26 | 919 | 889 | 0.19~1.91 | 0.19~4.78 |
本实验 | 25 | 1178.3 | 882 | 0.65~1.57 | 0.09~2.13 |
1 | 凡玉梅, 凡哲元, 余强. 基于开发技术的稠油油藏未动用储量分类评价[J]. 石油地质与工程, 2023, 37(3): 63-68. |
FAN Yumei, FAN Zheyuan, YU Qiang. Classification and evaluation of undeveloped reserves in heavy oil reservoirs based on development technologies[J]. Petroleum Geology and Engineering, 2023, 37(3): 63-68. | |
2 | 敬加强, 代科敏, 李业, 等. 水基泡沫降低稠油流动阻力的新思路[J]. 西南石油大学学报(自然科学版), 2013, 35(3): 174-182. |
JING Jiaqiang, DAI Kemin, LI Ye, et al. New ideas of drag reduction for heavy oil flow using aqueous foam[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(3): 174-182. | |
3 | 敬加强, 孙杰, 赵红艳, 等. 稠油流动边界层水基泡沫减阻模拟[J]. 化工学报, 2014, 65(11): 4301-4308. |
JING Jiaqiang, SUN Jie, ZHAO Hongyan, et al. Simulation of drag reduction of aqueous foam on heavy oil flow boundary layer[J]. CIESC Journal, 2014, 65(11): 4301-4308. | |
4 | CHEN Jianbiao, LANG Xuemei, WANG Yanhong, et al. Comparative evaluation of different non-condensable gases on thermal behaviors, kinetics, high pressure properties, and product characteristics of heavy oil[J]. Energy Conversion and Management, 2018, 162: 13-25. |
5 | ZHOU Xiang, YUAN Qingwang, PENG Xiaolong, et al. A critical review of the CO2 huff ‘n’ puff process for enhanced heavy oil recovery[J]. Fuel, 2018, 215: 813-824. |
6 | 冯庆善. 关于长输管道统一定义与范围界定的讨论[J]. 油气储运, 2020, 39(5): 492-499. |
FENG Qingshan. Discussion on uniform definition and scoping of long-distance pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(5): 492-499. | |
7 | 徐英彪. 新型稠油化学降粘减阻剂的研制[J]. 中国石油和化工标准与质量, 2018, 38(1): 124-125 |
XU Yingbiao. Development of new chemical viscosity and drag reduction agent for heavy oil[J]. China Petroleum Chemical Standard Quality, 2018, 38(1): 124-125 | |
8 | GHOSH S, MANDAL T K, DAS G, et al. Review of oil water core annular flow[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 1957-1965. |
9 | 郭红霞, 解玉科, 陆建峰, 等. 稠油改质助剂研究进展[J]. 特种油气藏, 2022, 29(6): 11-19. |
GUO Hongxia, XIE Yuke, LU Jianfeng, et al. Eview on study of heavy oil modification additives[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 11-19. | |
10 | 吴君强, 蒋文明, 杜仕林, 等. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741. |
WU Junqiang, JIANG Wenming, DU Shilin, et al. Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying[J]. CIESC Journal, 2019, 70(5): 1734-1741. | |
11 | 尹晓云, 敬加强, 孙杰 等. 水平管内黏稠油水环输送管道停输再启动特性[J]. 石油机械, 2022, 50(04): 124-129. |
YIN Xiaoyun, JING Jiaqiang, SUN Jie, et al. Shutdown and restart characteristics on water ring transfer of heavy oil in horizontal pipeline[J]. China Petroleum Machinery, 2022, 50(04): 124-129. | |
12 | 江帆, 卢浩然, 黎斯杰, 等. 管阀内油水环状流稳定性的流固耦合分析[J]. 西安石油大学学报(自然科学版), 2020, 35(1): 97-103. |
JIANG Fan, LU Haoran, LI Sijie, et al. Stability analysis of oil-water annular flow in tube valve under fluid-solid coupling[J]. Journal of Xi’an Shiyou University (Natural Science), 2020, 35(1): 97-103. | |
13 | HASSON D, MANN V, NIR A. Annular flow of two immiscible liquids I. Mechanisms[J]. The Canadian Journal of Chemical Engineering, 1970, 48(5): 514-520. |
14 | PRADA J W V, BANNWART A C. Modeling of vertical core-annular flows and application to heavy oil production[J]. Journal of Energy Resources Technology, 2001, 123(3): 194-199. |
15 | SOTGIA G, TARTARINI P, STALIO E. Experimental analysis of flow regimes and pressure drop reduction in oil-water mixtures[J]. International Journal of Multiphase Flow, 2008, 34(12): 1161-1174. |
16 | STRAZZA D, GRASSI B, DEMORI M, et al. Core-annular flow in horizontal and slightly inclined pipes: Existence, pressure drops, and hold-up[J]. Chemical Engineering Science, 2011, 66(12): 2853-2863. |
17 | ARNEY M S, RIBEIRO G S, GUEVARA E, et al. Cement-lined pipes for water lubricated transport of heavy oil[J]. International Journal of Multiphase Flow, 1996, 22(2): 207-221. |
18 | CHEN Kangping, BAI Runyuan, JOSEPH D D. Lubricated pipelining. Part 3. Stability of core-annular flow in vertical pipes[J]. Journal of Fluid Mechanics, 1990, 214: 251. |
19 | JIANG Fan, WANG Yijun, Jiajie OU, et al. Numerical simulation on oil-water annular flow through the Π bend[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8235-8244. |
20 | 李业, 敬加强, 代科敏, 等. 基于FLUENT的黏稠油垂直上升水环输送数值模拟[J]. 油气储运, 2014, 33(2): 205-210. |
LI Ye, JING Jiaqiang, DAI Kemin, et al. Numerical simulation of vertical upward water annulurs transportation of heavy oil based on FLUENT[J]. Oil & Gas Storage and Transportation, 2014, 33(2): 205-210. | |
21 | ZAGUSTIN K, GUEVARA E, NUNEZ G. Process for restarting core flow with very viscous oils after a long standstill period[P]: GB2211911, 1991-07-31. |
22 | LIVINUS A, YEUNG H, LAO Liyun. Restart time correlation for core annular flow in pipeline lubrication of high-viscous oil[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(1): 293-302. |
23 | BENSAKHRIA A, PEYSSON Y, ANTONINI G. Experimental study of the pipeline lubrication for heavy oil transport[J]. Oil & Gas Science and Technology, 2004, 59(5): 523-533. |
24 | HERRERA J R, MENA B, ROMO C A, et al. Lubricated pipe transport of heavy crude oils[J]. Petroleum Science and Technology, 2009, 27(13): 1466-1479. |
25 | RODRIGUEZ O M H, BANNWART A C, DE CARVALHO C H M. Pressure loss in core-annular flow: Modeling, experimental investigation and full-scale experiments[J]. Journal of Petroleum Science and Engineering, 2009, 65: 67-75. |
26 | 黄树凤, 申龙涉, 郭佳天, 等. 超稠油水膜输送减阻率与含水率的关系[J]. 油气储运, 2011, 30(2): 123-124. |
HUANG Shufeng, SHEN Longshe, GUOJIA Tian, et al. The relation between water film drag reduction rate and water cut in super heavy oil transportation[J]. Oil & Gas Storage and Transportation, 2011, 30(2): 123-124, 135. | |
27 | LUO Xiaoming, Guobin LYU, ZHANG Wei, et al. Flow structure and pressure gradient of extra heavy crude oil-water two-phase flow[J]. Experimental Thermal and Fluid Science, 2017, 82: 174-181. |
28 | INGEN HOUSZ E M R M, OOMS G, HENKES R A W M, et al. A comparison between numerical predictions and experimental results for horizontal core-annular flow with a turbulent annulus[J]. International Journal of Multiphase Flow, 2017, 95: 271-282. |
29 | VAN DUIN E, HENKES R, OOMS G. Influence of oil viscosity on oil-water core-annular flow through a horizontal pipe[J]. Petroleum, 2019, 5(2): 199-205. |
30 | JING Jiaqiang, YIN Xiaoyun, MASTOBAEV B N, et al. Experimental study on highly viscous oil-water annular flow in a horizontal pipe with 90° elbow[J]. International Journal of Multiphase Flow, 2021, 135: 103499. |
31 | SUN Jie, JING Jiaqiang, WU Cheng, et al. Pipeline transport of heavy crudes as stable foamy oil[J]. Journal of Industrial and Engineering Chemistry, 2016, 44: 126-135. |
32 | WU Junqiang, JIANG Wenming, LIU Yang, et al. Study on hydrodynamic characteristics of oil-water annular flow in 90° elbow[J]. Chemical Engineering Research and Design, 2020, 153: 443-451. |
33 | CAVICCHIO C A M, BIAZUSSI J L, DE CASTRO M S, et al. Experimental study of viscosity effects on heavy crude oil-water core-annular flow pattern[J]. Experimental Thermal and Fluid Science, 2018, 92: 270-285. |
34 | ARNEY M S, BAI R, GUEVARA E, et al. Friction factor and holdup studies for lubricated pipelining — I. Experiments and correlations[J]. International Journal of Multiphase Flow, 1993, 19(6): 1061-1076. |
35 | BANNWART A C. Modeling aspects of oil-water core-annular flows[J]. Journal of Petroleum Science and Engineering, 2001, 32(2/3/4): 127-143. |
36 | BRAUNER N. Two-phase liquid-liquid annular flow[J]. International Journal of Multiphase Flow, 1991, 17(1): 59-76. |
37 | ZIGRANG D J, SYLVESTER N D. A review of explicit friction factor equations[J]. Journal of Energy Resources Technology, 1985, 107(2): 280-283. |
[1] | YIN Xiaoyun, LI Jing, LIN Dong, HU Jinyan, ZHANG Liang, JING Jiaqiang, KARIMOV Rinat M, SUN Jie. Effect of polyacrylamide on flow characteristics of highly viscous oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1157-1166. |
[2] | WANG Lei, CAO Xiongjin, LUO Kai, WANG Yan, FEI Hua. Pressure drop characteristics of supercritical CO2 in heating mini-channel with different flow directions [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 830-843. |
[3] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[4] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[5] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[6] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[7] | LUO Xiaoping, ZHOU Jiayu, LI Guizhong. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170. |
[8] | YIN Xiaoyun, FU Linhao, LI Jiayi, CHENG Sijie, JING Jiaqiang, MASTOBAEV Boris N, SUN Jie. Analysis of restart-up pressure drop characteristics of heavy oil-water ring transportation pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5669-5679. |
[9] | ZHU Ge, BI Qincheng, TIAN Shujian, YAN Jianguo. Analysis of pressure drop characteristics of the cooling channel with twisted tape insert under high and non-uniform heat fluxes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5083-5091. |
[10] | JIA Wenlong, SUN Yibin, TANG Ding, CHEN Jiawen, LEI Siluo, LI Changjun. Intelligent recognition method for pressure drop signals of gas pipeline leakage based on support vector machine [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4713-4722. |
[11] | YANG Fengling, LIANG Guolin, ZHANG Cuixun, WANG Guichao. Drag reduction performance of a hydrophobic Rushton impeller [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4682-4690. |
[12] | YUAN Ying, JING Jiaqiang, YIN Ran, ZHANG Ming, HAN Li, LAI Tianhua. Synergistic drag reduction effect of cationic surfactant and polymer compound system [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2593-2603. |
[13] | WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, CUI Kaixiang, JING Jiaqiang. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139. |
[14] | LIAO Peiyi, YANG Daijun, MING Pingwen, XUE Mingzhe, LI Bing, ZHANG Cunman. Research progress of gas-liquid two-phase flow in micro-channel and its application in PEMFC [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4734-4748. |
[15] | LI Juan, ZHU Zhangyu, ZHAI Hao, WANG Jialuo. Research progress on heat transfer enhancement and surface drag reduction techniques based on bionics [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2375-2388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |