Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2593-2603.DOI: 10.16085/j.issn.1000-6613.2021-1269
• Materials science and technology • Previous Articles Next Articles
YUAN Ying1(), JING Jiaqiang1,2(
), YIN Ran1, ZHANG Ming3, HAN Li4, LAI Tianhua5
Received:
2021-06-17
Revised:
2021-08-23
Online:
2022-05-24
Published:
2022-05-05
Contact:
JING Jiaqiang
袁颖1(), 敬加强1,2(
), 尹然1, 张明3, 韩力4, 赖天华5
通讯作者:
敬加强
作者简介:
袁颖(1993—),女,博士研究生,研究方向为湍流减阻、油气多相流。E-mail:基金资助:
CLC Number:
YUAN Ying, JING Jiaqiang, YIN Ran, ZHANG Ming, HAN Li, LAI Tianhua. Synergistic drag reduction effect of cationic surfactant and polymer compound system[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2593-2603.
袁颖, 敬加强, 尹然, 张明, 韩力, 赖天华. 阳离子型表面活性剂与聚合物复配体系协同减阻作用[J]. 化工进展, 2022, 41(5): 2593-2603.
试剂 | 代号 | 分子式 | 分子量 | 离子类型 | 离子度 | 纯度 | 来源 |
---|---|---|---|---|---|---|---|
十六烷基三甲基氯化铵 | CTAC | C19H42ClN | 319.99 | 阳离子 | — | ≥90.0% | 成都科隆化工试剂厂 |
十二烷基二甲基苄基氯化铵 | DDBAC | C21H38NCl | 340.00 | 阳离子 | — | ≥90.0% | 山东优索化工 |
水杨酸钠 | NaSal | C7H5O3Na | 160.10 | — | — | 99.5% | 成都科隆化工试剂厂 |
阳离子型聚丙烯酰胺 | CPAM | (C3H5NO) n | — | 阳离子 | 30 | ≥90.0% | 科洁环保 |
阴离子型聚丙烯酰胺 | APAM | 6×106 | 阴离子 | — | ≥90.0% | ||
两性离子型聚丙烯酰胺 | AmPAM | — | 两性离子 | — | ≥90.0% | ||
非离子型聚丙烯酰胺 | NPAM | — | 非离子 | — | ≥90.0% |
试剂 | 代号 | 分子式 | 分子量 | 离子类型 | 离子度 | 纯度 | 来源 |
---|---|---|---|---|---|---|---|
十六烷基三甲基氯化铵 | CTAC | C19H42ClN | 319.99 | 阳离子 | — | ≥90.0% | 成都科隆化工试剂厂 |
十二烷基二甲基苄基氯化铵 | DDBAC | C21H38NCl | 340.00 | 阳离子 | — | ≥90.0% | 山东优索化工 |
水杨酸钠 | NaSal | C7H5O3Na | 160.10 | — | — | 99.5% | 成都科隆化工试剂厂 |
阳离子型聚丙烯酰胺 | CPAM | (C3H5NO) n | — | 阳离子 | 30 | ≥90.0% | 科洁环保 |
阴离子型聚丙烯酰胺 | APAM | 6×106 | 阴离子 | — | ≥90.0% | ||
两性离子型聚丙烯酰胺 | AmPAM | — | 两性离子 | — | ≥90.0% | ||
非离子型聚丙烯酰胺 | NPAM | — | 非离子 | — | ≥90.0% |
Re′ | DR/% | Δ/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
溶液1 | 溶液2 | 溶液3 | 溶液4 | 溶液5 | 溶液6 | Δ溶液2 | Δ溶液3 | Δ溶液4 | Δ溶液5 | Δ溶液6 | |
16334.00 | 42.52 | 51.29 | 53.84 | 65.97 | 64.60 | 12.40 | 20.65 | 26.63 | 55.17 | 51.95 | -70.84 |
24951.14 | 44.16 | 63.93 | 61.39 | 70.17 | 69.01 | 10.06 | 44.78 | 39.03 | 58.92 | 56.27 | -77.23 |
31642.92 | 44.60 | 60.90 | 66.82 | 71.52 | 71.03 | 7.80 | 36.56 | 49.84 | 60.38 | 59.28 | -82.53 |
平均值 | 43.75 | 58.71 | 60.68 | 69.22 | 68.21 | 10.08 | 34.00 | 38.50 | 58.16 | 55.83 | -76.87 |
Re′ | DR/% | Δ/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
溶液1 | 溶液2 | 溶液3 | 溶液4 | 溶液5 | 溶液6 | Δ溶液2 | Δ溶液3 | Δ溶液4 | Δ溶液5 | Δ溶液6 | |
16334.00 | 42.52 | 51.29 | 53.84 | 65.97 | 64.60 | 12.40 | 20.65 | 26.63 | 55.17 | 51.95 | -70.84 |
24951.14 | 44.16 | 63.93 | 61.39 | 70.17 | 69.01 | 10.06 | 44.78 | 39.03 | 58.92 | 56.27 | -77.23 |
31642.92 | 44.60 | 60.90 | 66.82 | 71.52 | 71.03 | 7.80 | 36.56 | 49.84 | 60.38 | 59.28 | -82.53 |
平均值 | 43.75 | 58.71 | 60.68 | 69.22 | 68.21 | 10.08 | 34.00 | 38.50 | 58.16 | 55.83 | -76.87 |
1 | BEWERSDORFF H W, OHLENDORF D. The behaviour of drag-reducing cationic surfactant solutions[J]. Colloid and Polymer Science, 1988, 266(10): 941-953. |
2 | OHLENDORF D, INTERTHAL W, HOFFMANN H. Surfactant systems for drag reduction: physico-chemical properties and rheological behaviour[J]. Rheologica Acta, 1986, 25(5): 468-486. |
3 | ABUBAKAR A, AL-WAHAIBI T, AL-WAHAIBI Y, et al. Roles of drag reducing polymers in single-and multi-phase flows[J]. Chemical Engineering Research and Design, 2014, 92(11): 2153-2181. |
4 | HADRI F, BESQ A, GUILLOU S, et al. Temperature and concentration influence on drag reduction of very low concentrated CTAC/NaSal aqueous solution in turbulent pipe flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(5/6): 326-331. |
5 | WEI J J, WANG J F, ZHANG C W, et al. Combined effects of temperature and Reynolds number on drag-reducing characteristics of a cationic surfactant solution[J]. The Canadian Journal of Chemical Engineering, 2012, 90(5): 1304-1310. |
6 | 魏进家, 黄崇海, 徐娜. 表面活性剂湍流减阻研究进展[J]. 化工进展,2016, 35(6): 1660-1675. |
WEI Jinjia, HUANG Chonghai, XU Na. Research progress concerning turbulent drag reduction of surfactant solution[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1660-1675. | |
7 | MOHSENIPOUR A A, PAL R. The role of surfactants in mechanical degradation of drag-reducing polymers[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1291-1302. |
8 | LIU D J, LIU F, ZHOU W J, et al. Molecular dynamics simulation of self-assembly and viscosity behavior of PAM and CTAC in salt-added solutions[J]. Journal of Molecular Liquids, 2018, 268: 131-139. |
9 | MOHSENIPOUR A A, PAL R. Drag reduction in turbulent pipeline flow of mixed nonionic polymer and cationic surfactant systems[J]. The Canadian Journal of Chemical Engineering, 2013, 91(1): 190-201. |
10 | SAVINS J G. A stress-controlled drag-reduction phenomenon[J]. Rheologica Acta, 1967, 6(4): 323-330. |
11 | TSUJII K, SAITO N, TAKEUCHI T. Viscoelastic and some colloid chemical properties of partially neutralized alkenylsuccinates in dilute aqueous solutions[J]. Journal of Colloid and Interface Science, 1984, 99(2): 553-560. |
12 | HOMENDRA N, DEVI C I. Turbidity studies on mixed surfactant systems in hard water: a new method for estimation of water hardness[J]. Indian Journal of Chemical Technology, 2004, 11(6): 783-786. |
13 | HU P C, TUVELL M E. Effect of water hardness ions on the solution properties of an anionic surfactant[J]. Journal of the American Oil Chemists Society, 1988, 65(8): 1340-1345. |
14 | BANERJEE T, SAMANTA A, MANDAL A. Mathematical regression models for rheological behavior of interaction between polymer-surfactant binary mixtures and electrolytes[J]. Journal of Dispersion Science and Technology, 2020: 1-13. |
15 | HAMOUMA M, DELBOS A, DALMAZZONE C, et al. Polymer surfactant interactions in oil enhanced recovery processes[J]. Energy & Fuels, 2021, 35(11): 9312-9321. |
16 | TERADA E, SAMOSHINA Y, T NYLANDER et al. Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surfaces. Ⅰ. Silica surfaces[J]. Langmuir, 2004, 20(5): 1753-1762. |
17 | CHAKRABORTY T, CHAKRABORTY I, GHOSH S. Sodium carboxymethylcellulose-CTAB interaction: a detailed thermodynamic study of polymer-surfactant interaction with opposite charges[J]. Langmuir, 2006, 22(24): 9905-9913. |
18 | CHAI Y L, LI X W, GENG J F, et al. Mechanistic study of drag reduction in turbulent pipeline flow over anionic polymer and surfactant mixtures[J]. Colloid and Polymer Science, 2019, 297(7/8): 1025-1035. |
19 | 王晨, 陈新远, 朱湛, 等. 阳离子碳氢/碳氟表面活性剂与中性高聚物相互作用的研究[J]. 化学学报, 2009, 67(13): 1425-1429. |
WANG Chen, CHEN Xinyuan, ZHU Zhan,et al. Interactions between cationic hydrogenated/fluorinated surfactants and neutral polymers[J]. Acta Chimica Sinica, 2009, 67(13): 1425-1429. | |
20 | MALCHER T, GZYL-MALCHER B. Influence of polymer-surfactant aggregates on fluid flow[J]. Bioelectrochemistry, 2012, 87: 42-49. |
21 | 王青会, 刘冬洁, 魏进家. 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究[J]. 西安交通大学学报, 2018, 52(1): 26-32. |
WANG Qinghui, LIU Dongjie, WEI Jinjia. Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 26-32. | |
22 | JING J Q, YUAN Y, YIN R, et al. Effects of oilfield injection water component on rheological characteristics of CTAC/NaSal aqueous solution[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(2): e2612. |
23 | 朱蒙生. 管流添加剂减阻的实验与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
ZHU Mengsheng. Experiment and mechanism study on drag–reduction by additives in pipe flow[D]. Harbin: Harbin Institute of Technology, 2009. | |
24 | ZAKIN J L, LU B, BEWERSDORFF H W. Surfactant drag reduction[J]. Reviews in Chemical Engineering, 1998, 14(4/5): 253. |
25 | 邹春昱. 新型胶束体系流变和减阻性能研究[D]. 上海: 华东理工大学, 2012. |
ZOU Chunyu. Study on the rheological properties and drag reduction of new micelle systems[D]. Shanghai: East China University of Science and Technology, 2012. | |
26 | AGUILAR G, GASLJEVIC K, MATTHYS E F. Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions[J]. International Journal of Heat and Mass Transfer, 2001, 44(15): 2835-2843. |
27 | TAYLOR D J F, THOMAS R K, PENFOLD J. Polymer/surfactant interactions at the air/water interface[J]. Advances in Colloid and Interface Science, 2007, 132(2): 69-110. |
28 | PETKOVA R, TCHOLAKOVA S, DENKOV N D. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge[J]. Langmuir, 2012, 28(11): 4996-5009. |
29 | WANG C, TAM K C. New insights on the interaction mechanism within oppositely charged polymer/surfactant systems[J]. Langmuir, 2002, 18(17): 6484-6490. |
30 | XU Y, FENG J, SHANG Y Z, et al. Molecular dynamics simulation for the effect of chain length of spacer and tail of cationic Gemini surfactant on the complex with anionic polyelectrolyte[J]. Chinese Journal of Chemical Engineering, 2007, 15(4): 560-565. |
31 | 李海普, 陆文霞, 秦春阳, 等. 高分子与表面活性剂在水相中的相互作用[J]. 高分子通报, 2013(3):18-24. |
LI Haipu, LU Wenxia, QIN Chunyang, et al. Interactions of polymer with surfactant in aqueous phase[J]. Polymer Bulletin, 2013(3): 18-24. | |
32 | NAGARAJAN R. Thermodynamics of nonionic polymer—micelle association[J]. Colloids and Surfaces, 1985, 13: 1-17. |
33 | 敬加强, 孙娜娜, 安云朋, 等. 两性表面活性剂与阴离子聚丙烯酰胺复配体系的抗盐性[J]. 高分子学报, 2015(1): 88-96. |
JING Jiaqiang, SUN Nana, AN Yunpeng, et al. Salt resistance of compound systems for amphoteric surfactant and HPAM[J]. Acta Polymerica Sinica, 2015(1): 88-96. | |
34 | FEITOSA E, BROWN W, WANG K, et al. Interaction between poly(ethylene glycol) and C12E8 investigated by dynamic light scattering, time-resolved fluorescence quenching, and calorimetry[J]. Macromolecules, 2002, 35(1): 201-207. |
35 | GODDARD E D. Polymer—surfactant interaction Part Ⅰ. uncharged water-soluble polymers and charged surfactants[J]. Colloids and Surfaces, 1986, 19(2/3): 255-300. |
36 | BIERBRAUER K L, ALASINO R V, STRUMIA M C, et al. Cationic cellulose and its interaction with chondroitin sulfate. Rheological properties of the polyelectrolyte complex[J]. European Polymer Journal, 2014, 50: 142-149. |
37 | 曹宝格, 陈明强, 罗平亚, 等. 疏水缔合聚合物溶液的临界缔合浓度[J]. 西安石油大学学报(自然科学版), 2008, 23(4): 40-42, 48. |
CAO Baoge, CHEN Mingqiang, LUO Pingya, et al. Study on the critical associating concentration of hydrophobic associating polymer solution[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2008, 23(4): 40-42, 48. |
[1] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[2] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[5] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[6] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[7] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[8] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[9] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[10] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[11] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[12] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[13] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[14] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[15] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 596
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 390
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |