Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (4): 1348-1356.DOI: 10.16085/j.issn.1000-6613.2019-1227
• Energy processes and technology • Previous Articles Next Articles
Chengyuan HE,Shidong ZHOU(),Tiancheng QIN,Wenwen ZHANG,Xiaofang LÜ,Shuli WANG,Haoyang JI
Received:
2019-07-30
Online:
2020-04-28
Published:
2020-04-05
Contact:
Shidong ZHOU
通讯作者:
周诗岽
作者简介:
何骋远(1995—),男,硕士研究生,研究方向为管道输送与气体水合物利用技术等。
基金资助:
CLC Number:
Chengyuan HE,Shidong ZHOU,Tiancheng QIN,Wenwen ZHANG,Xiaofang LÜ,Shuli WANG,Haoyang JI. Induction characteristics of carbon dioxide hydrate formation under intermittent flow[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1348-1356.
何骋远,周诗岽,秦天成,张文文,吕晓方,王树立,姬浩洋. 间歇流条件下二氧化碳水合物生成诱导特性[J]. 化工进展, 2020, 39(4): 1348-1356.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1227
工况 | 压力/MPa | 温度/℃ | 气液体积比 | 流量/L?min-1 | 流型 |
---|---|---|---|---|---|
1 | 3 | 0.5 | 7∶33 | 1.68 | 气团流 |
2 | 3 | 0.5 | 7∶33 | 3.36 | 气团流 |
3 | 3 | 0.5 | 7∶33 | 8.40 | 气团流 |
4 | 3 | 0.5 | 7∶33 | 13.44 | 段塞流 |
5 | 3 | 0.5 | 7∶33 | 16.80 | 段塞流 |
6 | 3 | 0.5 | 7∶33 | 26.88 | 段塞流 |
工况 | 压力/MPa | 温度/℃ | 气液体积比 | 流量/L?min-1 | 流型 |
---|---|---|---|---|---|
1 | 3 | 0.5 | 7∶33 | 1.68 | 气团流 |
2 | 3 | 0.5 | 7∶33 | 3.36 | 气团流 |
3 | 3 | 0.5 | 7∶33 | 8.40 | 气团流 |
4 | 3 | 0.5 | 7∶33 | 13.44 | 段塞流 |
5 | 3 | 0.5 | 7∶33 | 16.80 | 段塞流 |
6 | 3 | 0.5 | 7∶33 | 26.88 | 段塞流 |
工况 | A/×1035m-3·s-1 | G/m-2·s-1 | J/m-3·s-1 | ||
---|---|---|---|---|---|
1 | 0.00832 | 340 | 8.3081 | 22.1351 | 2411.916 |
2 | 0.00799 | 353 | 8.0842 | 21.0259 | 2853.709 |
3 | 0.00664 | 423 | 7.1462 | 16.7883 | 3734.732 |
4 | 0.00426 | 653 | 5.2879 | 9.9271 | 13277.710 |
5 | 0.00440 | 635 | 5.4180 | 10.3682 | 6783.020 |
6 | 0.00753 | 372 | 7.7604 | 19.4411 | 6380.770 |
工况 | A/×1035m-3·s-1 | G/m-2·s-1 | J/m-3·s-1 | ||
---|---|---|---|---|---|
1 | 0.00832 | 340 | 8.3081 | 22.1351 | 2411.916 |
2 | 0.00799 | 353 | 8.0842 | 21.0259 | 2853.709 |
3 | 0.00664 | 423 | 7.1462 | 16.7883 | 3734.732 |
4 | 0.00426 | 653 | 5.2879 | 9.9271 | 13277.710 |
5 | 0.00440 | 635 | 5.4180 | 10.3682 | 6783.020 |
6 | 0.00753 | 372 | 7.7604 | 19.4411 | 6380.770 |
流量/L·min-1 | 诱导时间实验值/s | 诱导时间计算值/s | 相对误差/% | 平均相对误差/% |
---|---|---|---|---|
1.68 | 1803 | 1856.6 | 2.89 | 4.99 |
3.36 | 1647 | 1679.6 | 1.94 | |
8.4 | 1530 | 1571.6 | 2.65 | |
13.44 | 903 | 963.2 | 6.25 | |
16.8 | 1167 | 1260.7 | 7.43 | |
26.88 | 1407 | 1293.2 | 8.80 |
流量/L·min-1 | 诱导时间实验值/s | 诱导时间计算值/s | 相对误差/% | 平均相对误差/% |
---|---|---|---|---|
1.68 | 1803 | 1856.6 | 2.89 | 4.99 |
3.36 | 1647 | 1679.6 | 1.94 | |
8.4 | 1530 | 1571.6 | 2.65 | |
13.44 | 903 | 963.2 | 6.25 | |
16.8 | 1167 | 1260.7 | 7.43 | |
26.88 | 1407 | 1293.2 | 8.80 |
1 | KOH C A, SUM A K, SLOAN E D. State of the art: natural gas hydrates as a natural resource[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 132-138. |
2 | 刘爱贤, 李亮, 郭绪强. 水合物导热系数的测定[J]. 石油化工高等学校学报, 2011, 24(5): 6-9. |
LIU Aixian, LI Liang, GUO Xuqiang. Measurement of the thermal conductivity of hydrates[J]. Journal of Petrochemical Universities, 2011, 24(5): 6-9. | |
3 | 刘妮, 王亮, 刘道平. 二氧化碳水合物储气特性的实验研究[J]. 环境工程学报, 2010, 4(3): 621-624. |
LIU Ni, WANG Liang, LIU Daoping. Experiment on gas storage characteristics of carbon dioxide hydrate[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 621-624. | |
4 | FAN Shuanshi, WANG Xi, LANG Xuemei, et al. Energy efficiency simulation of the process of gas hydrate exploitation from flue gas in an electric power plant[J]. Natural Gas Industry B, 2017, 4(6): 470-476. |
5 | XU Chungang, CAI Jing, YU Yisong, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates[J]. Fuel, 2018, 216: 255-265. |
6 | YANG Mingjun, ZHOU Hang, WANG Pengfei, et al. Hydrate-based CO2 capture from flue gas in constant pressure process with the presence of THF[J]. Energy Procedia, 2017, 142: 3939-3943. |
7 | LIU Yu, WANG Pengfei, YANG Mingjun, et al. CO2 sequestration in depleted methane hydrate sandy reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 428-434. |
8 | LEE Y, CHOI W, SHIN K, et al. CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration[J]. Energy Conversion and Management, 2017, 150: 356-364. |
9 | 陈伟军, 刘妮, 肖晨, 等. CO2水合物浆在蓄冷空调中的应用前景[J]. 制冷学报, 2012, 33(3): 1-4. |
CHEN Weijun, LIU Ni, XIAO Chen, et al. Perspective of CO2 hydrate slurry application in air conditioning system with cool storage[J]. Journal of Refrigeration, 2012, 33(3): 1-4. | |
10 | CHOI J W, KIM S, KANG Y T. CO2 hydrate cooling system and LCC analysis for energy transportation application[J]. Applied Thermal Engineering, 2015, 91: 11-18. |
11 | 何晓霞, 王胜杰, 刘芙蓉. 一种精确计算天然气水合物密度的方法[J]. 天然气工业, 2004, 24(10): 30-37. |
HE Xiaoxia, WANG Shengjie, LIU Furong. A method of calculating accurately natural gas hydrate density[J]. Natural Gas Industry, 2004, 24(10): 30-37. | |
12 | 吕晓方, 吴海浩, 史博会, 等. 流动体系中二氧化碳水合物堵管时间实验研究[J]. 实验室研究与探索, 2013, 32(11): 197-202. |
Xiaofang LÜ, WU Haihao, SHI Bohui, et al. Experimental study on the time for CO2 hydrate blockage in a flow loop[J]. Research and Exploration in Laboratory, 2013, 32(11): 197-202. | |
13 | 周麟晨, 孙志高, 陆玲, 等. 有机相变乳液中HCFC-141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681. |
ZHOU Linchen, SUN Zhigao, LU Ling, et al. Formation and stability of HCFC-141b hydrate in organic phase change emulsion[J]. CIESC Journal, 2019, 70(5): 1674-1681. | |
14 | 张保勇, 于跃, 吴强, 等. NaCl对瓦斯水合物相平衡的影响[J]. 煤炭学报, 2014, 39(12): 2425-2430. |
ZHANG Baoyong, YU Yue, WU Qiang, et al. Effect of NaCl on the phase equilibrium of mine gas hydrate[J]. Journal of China Coal Society, 2014, 39(12): 2425 -2430. | |
15 | 张强, 吴强, 张保勇, 等. NaCl-SDS 复合溶液中多组分瓦斯水合物成核动力学机理[J]. 煤炭学报, 2015, 40(10): 2430-2436. |
ZHANG Qiang, WU Qiang, ZHANG Baoyong, et al. Nucleation kinetics mechanism of multi-component mine gas hydrate in NaCl-SDS mixed solutions[J]. Journal of China Coal Society, 2015, 40(10): 2430-2436. | |
16 | 汤小蒙, 孙志高, 陈之帆, 等. 铜网促进四氢呋喃水合物生成实验[J]. 低温工程, 2018(4): 25-29. |
TANG Xiaomeng, SUN Zhigao, CHEN Zhifan, et al. Promoting tetrahydrofuran hydrate formation with copper mesh[J]. Cryogenics, 2018(4): 25-29. | |
17 | 张金华, 张郁, 魏伟. 石英砂介质中CO2水合物形成影响研究[J]. 天然气化工(C1化学与化工), 2018, 43(2): 34-39. |
ZHANG Jinhua, ZHANG Yu, WEI Wei. Influence factors of carbon dioxide hydrate formation in quartz sand media[J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Industry), 2018, 43(2): 34-39. | |
18 | 周诗岽, 于雪薇, 江坤, 等. 蜡晶析出对天然气水合物生成动力学特性的影响[J]. 天然气工业, 2018, 38(3): 103-109. |
ZHOU Shidong, YU Xuewei, JIANG Kun, et al. Effect of wax crystal precipitation on the kinetic characteristics of hydrate formation[J]. Natural Gas Industry, 2018, 38(3): 103-109. | |
19 | JOSHI S V, GRASSO G A, LAFOND P G, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science, 2013, 97(7): 198-209. |
20 | HAASE S. Characterisation of gas-liquid two-phase flow in minichannels with co-flowing fluid injection inside the channel, part II: Gas bubble and liquid slug lengths, film thickness, and void fraction within Taylor flow[J]. International Journal of Multiphase Flow, 2017, 88: 251-269. |
21 | KASHCHIEV D, FIROOZABADI A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250: 499-515. |
22 | SUN C Y, CHEN G J, YUE G L. The induction period of hydrate formation in a flow system[J]. Chinese Journal of Chemical Engineering, 2004, 12(4): 527-531. |
23 | CHRISTIANSEN R L, SLOAN E D. A compact model for hydrate formation[C]//Proceedings of the 74th Annual Convention of the Gas Processors Association, San Antonio, Texas, 1995. |
24 | TALAGHAT M R. Prediction of induction time for natural gas components during gas hydrate formation in the presence of kinetic hydrate inhibitors in a flow mini-loop apparatus[J]. Canadian Journal of Chemical Engineering, 2013, 91(4): 790-797. |
25 | 李思广, 李彦军, 杨龙滨, 等. 基于不同状态方程预测气体水合物相平衡条件[J]. 化工学报, 2018, 69(1): 8-14. |
LI Siguang, LI Yanjun, YANG Longbin, et al. Prediction of phase equilibrium of gas hydrates based on different equations of state[J]. CIESC Journal, 2018, 69(1): 8-14. | |
26 | 辛亚男, 张建文, 张淑珍, 等. 螺旋内槽管内天然气-水-表面活性剂体系的水合物生成动力学计算[J]. 化工学报, 2018, 69(6): 134-144. |
XIN Yanan, ZHANG Jianwen, ZHANG Shuzhen, et al. Modelling hydrate formation kinetics of natural gas-water-surfactant system in internal spiral-grooved tube[J]. CIESC Journal, 2018, 69(6): 134-144. | |
27 | 姜俊泽, 张伟明. 水平管道气液两相段塞流参数计算的精确模型[J]. 化工学报, 2012, 63(12): 3826-3831. |
JIANG Junze, ZHANG Weiming. Accurate model for computing parameters of gas-liquid slug flow in horizontal pipe[J]. CIESC Journal, 2012, 63(12): 3826-3831. | |
28 | 赵志勇, 王树立, 彭杰. 气液两相段塞流中双流体模型的分析[J]. 管道技术与设备, 2001(1): 3-7. |
ZHAO Zhiyong, WANG Shuli, PENG Jie. A two-fluid model used in gas and liquid two-phase slug flow[J]. Pipeline Technique and Equipment, 2001(1): 3-7. | |
29 | SCOTT S L, SHOHAM O, BRILL J P. Prediction of slug length in horizontal large-diameter pipes[J]. SPE Production Engineering, 1989, 4(3): 335-340. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[7] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[8] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[9] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[10] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[11] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[12] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[13] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[14] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[15] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |