Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 101-108.DOI: 10.16085/j.issn.1000-6613.2021-0689
• Energy processes and technology • Previous Articles Next Articles
ZHANG Xuemin1,2,3(), ZHANG Mengjun1,2,3, YANG Huijie1,2,3, LI Yinhui1,2,3, LI Jinping1,2,3, WANG Yingmei1,2,4
Received:
2021-04-05
Revised:
2021-05-19
Online:
2021-11-12
Published:
2021-11-12
Contact:
ZHANG Xuemin
张学民1,2,3(), 张梦军1,2,3, 杨惠结1,2,3, 李银辉1,2,3, 李金平1,2,3, 王英梅1,2,4
通讯作者:
张学民
作者简介:
张学民(1987—),男,博士,副教授,硕士生导师,主要从事气体水合物生成与分解动力学方面的研究。E-mail: 基金资助:
CLC Number:
ZHANG Xuemin, ZHANG Mengjun, YANG Huijie, LI Yinhui, LI Jinping, WANG Yingmei. Research progress on formation kinetics of gas hydrate in porous media below freezing point[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 101-108.
张学民, 张梦军, 杨惠结, 李银辉, 李金平, 王英梅. 冰点以下多孔介质中气体水合物的生成动力学研究进展[J]. 化工进展, 2021, 40(S2): 101-108.
1 | SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. |
2 | 孙萍. 天然气水合物——二十一世纪的新能源[J]. 海洋地质动态, 1998(12):3-6. |
SUN P. Natural gas hydrate—new energy in the 21st century[J]. Frontiers of Marine Geology, 1998(12): 3-6. | |
3 | BENSON S M, COLE D R. CO2 sequestration in deep sedimentary formations[J]. Elements, 2008, 4(5): 325-331. |
4 | ZHANG X M, WANG Y M, LI J P, et al. Recovering CH4 from natural gas hydrate with CO2 in porous media below the freezing point[J]. Petroleum Science and Technology, 2019, 37(7): 770-779. |
5 | XIE Y, ZHU Y J, ZHENG T, et al. Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate[J]. Chemical Engineering Journal, 2021, 403(3):1-11. |
6 | REHDER G, ECKL R, ELFGEN M, et al. Methane hydrate pellet transport using the self-preservation effect: a techno-economic analysis[J]. Energies, 2012, 5(7): 2499-2523. |
7 | MIMACHI H, TAKEYA S, YONEYAMA A, et al. Natural gas storage and transportation within gas hydrate of smaller particle: size dependence of self-preservation phenomenon of natural gas hydrate[J]. Chemical Engineering Science, 2014, 118(3): 208-213. |
8 | MUROMACHI S, OHMURA R, TAKEYA S, et al. Clathrate hydrates for ozone preservation[J]. The Journal of Physical Chemistry B, 2010, 114(35): 11430-11435. |
9 | NAKAJIMA T, AKATSU S, OHMURA R, et al. Molecular storage of ozone in a clathrate hydrate formed from an O3+ O2+ CO2 gas mixture[J]. Angewandte Chemie, 2011, 123(44): 10524-10527. |
10 | PETERS T B, SMITH J L, BRISSON J G. Production of CO2 clathrate hydrate frozen desserts by flash freezing[J]. Journal of food engineering, 2010, 100(4): 669-677. |
11 | SATO T, TAKEYA S, NAGASHIMA H D, et al. Preservation of carbon dioxide clathrate hydrate coexisting with sucrose under domestic freezer conditions[J]. Journal of Food Engineering, 2014, 120(1):69-74. |
12 | NAGASHIMA H D, ALAVI S, OHMURA R. Preservation of carbon dioxide clathrate hydrate in the presence of fructose or glucose and absence of sugars under freezer conditions[J]. Journal of Industrial and Engineering Chemistry, 2017, 54(7): 332-340. |
13 | HATAKEYAMA T, AIDA E, YOKOMORI T, et al. Fire extinction using carbon dioxide hydrate[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4083-4087. |
14 | ZHANG X M, LI J P, WU Q B, et al. Experimental study on the characteristics of CO2 hydrate formation in porous media below freezing point[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(3): 32-38. |
15 | CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162(7): 1633-1652. |
16 | 孙长宇, 陈光进, 郭天民. 水合物成核动力学研究现状[J]. 石油学报, 2001, 22(4): 82-86. |
SUN C Y, CHEN G J, GUO T M. Research status of hydrate nucleation kinetics[J]. Acta Petrolei Sinica, 2001, 22(4): 82-86. | |
17 | SLOAN E D, FLEYFEL F. A molecular mechanism for gas hydrate nucleation from ice[J]. AIChE Journal, 1991, 37(9): 1281-1292. |
18 | JANDER W. Reaktionen im festen zustande bei höheren temperaturen. reaktionsgeschwindigkeiten endotherm verlaufender umsetzungen[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1927, 163(1): 1-30. |
19 | FUJII K, KONDO W. Kinetics of the hydration of tricalcium silicate[J]. Journal of the American Ceramic Society, 1974, 57(11): 492-497. |
20 | HENNING R W, SCHULTI A J, THIEU V, et al. Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice[J]. The Journal of Physical Chemistry A, 2000, 104(21): 5066-5071. |
21 | KUHS W F, STAYKOVA D K, SALAMATIN A N. Formation of methane hydrate from polydisperse ice powders[J]. The Journal of Physical Chemistry B, 2006, 110(26): 13283-13295. |
22 | KAWAMURA T, KOMIA T, YAMAMOTO Y, et al. Growth kinetics of CO2 hydrate just below melting point of ice[J]. Journal of Crystal Growth, 2002, 234(1): 220-226. |
23 | WANG X, SCHULTZ A J, HALPERN Y. Kinetics of methane hydrate formation from polycrystalline deuterated ice[J]. The Journal of Physical Chemistry A, 2002, 106(32): 7304-7309. |
24 | FALENTY A, GENVO G, HANSEN T C, et al. Kinetics of CO2 hydrate formation from water frost at low temperatures: experimental results and theoretical model[J]. The Journal of Physical Chemistry C, 2011, 115(10): 4022-4032. |
25 | VLASOV V A. Phenomenological diffusion theory of formation of gas hydrate from ice powder[J]. Theoretical Foundations of Chemical Engineering, 2012, 46(6): 576-582. |
26 | VLASOV V A. Diffusion model of gas hydrate formation from ice[J]. Heat and Mass Transfer, 2016, 52(3): 531-537. |
27 | VLASOV V A. Simplified diffusion model of gas hydrate formation from ice[J]. International Journal of Heat and Mass Transfer, 2021, 165(7): 1-7. |
28 | BARRER R M, EDGE A V J. Gas hydrates containing argon, krypton and xenon: kinetics and energetics of formation and equilibria[J]. Proceedings of the Royal Society of London, 1967, 300(1460):1-24. |
29 | HWANG M J, WRUGHT D A, KAPUR A, et al. An experimental study of crystallization and crystal growth of methane hydrates from melting ice[J]. Journal of Inclusion Phenomena & Molecular Recognition in Chemistry, 1990, 8(1):103-116. |
30 | RIVREA J J, JANDA K C. Ice particle size and temperature dependence of the kinetics of propane clathrate hydrate formation[J]. The Journal of Physical Chemistry C, 2012, 116(36): 19062-19072. |
31 | NGUYEN M T, AMTAWONG J, SMOLL K, et al. Gas flow rate and temperature dependence of the kinetics of difluoromethane clathrate hydrate formation from CF2H2 gas and ice particles[J]. The Journal of Physical Chemistry C, 2016, 120(16): 8482-8489. |
32 | PIRZADEH P, KUSALIK P G. Molecular insights into clathrate hydrate nucleation at an ice-solution interface[J]. Journal of the American Chemical Society, 2013, 135(19): 7278-7287. |
33 | MOUR M, HAARDA M, HASEGAWA T, et al. Formation and growth of tetrahydrofuran hydrate at the ice/hexane interface[J]. The Journal of Physical Chemistry C, 2012, 116(24): 13296-13301. |
34 | LIU W G, WANG L J, YANG M J, et al. Experimental study on the methane hydrate formation from ice powders[J]. Energy Procedia, 2014, 61(1): 619-623. |
35 | 展静, 吴青柏, 王英梅. 冰点以下不同粒径冰颗粒形成CH4水合物的实验[J]. 天然气工业, 2009, 29(6): 126-129. |
ZHAN J, WU Q B, WANG Y M. Experiments on the formation of methane hydrate from ice particles with different sizes below freezing point[J]. Natural Gas Industry, 2009, 29(6): 126-129. | |
36 | LIU W G, LI Q Q, SONG Y C, et al. Diffusion theory of formation of gas hydrate from ice powder without melting[J]. Energy Procedia, 2014, 61(1): 513-522. |
37 | VLASOV V A. Formation and dissociation of gas hydrate in terms of chemical kinetics[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 5-13. |
38 | CHIGLINTSEVA A S, RUSINOV A A. Formation of a hydrate layer at a gas-water (ice) interface[J]. Journal of Engineering Physics and Thermophysics, 2019, 92(6): 1396-1405. |
39 | NAGASHIMA H D, OSHIMA M, JIN Y. Film-growth rates of methane hydrate on ice surfaces[J]. Journal of Crystal Growth, 2020, 537(3): 1-6. |
40 | ZHAO J F, LIANG H Y, YANG L, et al. Growth kinetics and gas diffusion in formation of gas hydrates from ice[J]. The Journal of Physical Chemistry C, 2020, 124(24): 12999-13007. |
41 | WANG Z, LU W G, LI Y H, et al. Influence of porous media on methane hydrate formation from ice powders[J]. Energy Procedia, 2017, 105(6): 224-229. |
42 | ZHANG X M, LI J P, WU Q B, et al. Effect of initial pressure on the formation of carbon dioxide hydrate in frozen quartz sand[J]. Energy & Fuels, 2019, 33(11): 11346-11352. |
43 | CHUVILIN E M, DAVLETSHINA D A, LUPACHIK M V. Hydrate formation in frozen and thawing methane-saturated sediments[J]. Earth’s Cryosphere, 2019, 23(2): 42-52. |
44 | 李金平, 姚泽, 李洋, 等. 冰点以下石英砂中二氧化碳水合物的生成特性[J]. 应用基础与工程科学学报, 2020, 28(4): 843-851. |
LI J P, YAO Z, LI Y, et al. Formation characteristics of carbon dioxide hydrate in quartz sand below freezing point[J]. Journal of Applied Basic Science and Engineering, 2020, 28(4): 843-851. | |
45 | LIU J, DING J X, LIANG D Q. Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed[J]. Energy, 2018, 157(2): 54-64. |
46 | LIU J, LIANG D Q. Investigation on methane hydrate formation in silica gel particles below the freezing point[J]. RSC Advances, 2019, 9(26): 15022-15032. |
47 | KHASANOV M K, MUSAKAEV N G. Gas hydrate formation in porous ice rich methane reservoirs upon injection of carbon dioxide: forward modeling[J]. Earth’s Cryosphere, 2016, 20(3): 59-65. |
48 | PIRZADEH P, KUSALIK P G. Molecular insights into clathrate hydrate nucleation at an ice-solution interface[J]. Journal of the American Chemical Society, 2013, 135(19): 7278-7287. |
49 | LIU W G, LI Y H, XU X H. Influence factors of methane hydrate formation from ice: temperature, pressure and SDS surfactant[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 405-410. |
50 | SA J H, SUM A K. Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications[J]. Applied Energy, 2019, 251(2): 1-10. |
51 | AMTAWONG J, GUO J, HALE J S, et al. Propane clathrate hydrate formation accelerated by methanol[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2346-2349. |
52 | MCLAURIN G, SHINK K, ALAVI S, et al. Antifreezes act as catalysts for methane hydrate formation from ice[J]. Angewandte Chemie, 2014, 126(39): 10597-10601. |
53 | BOBEV S, TAIT K T. Methanol-inhibitor or promoter of the formation of gas hydrates from deuterated ice?[J]. American Mineralogist, 2004, 89(8-9): 1208-1214. |
54 | CHEN Y A, CHU L K, CHU C K, et al. Synthesis of methane hydrate from ice powder accelerated by doping ethanol into methane gas[J]. Scientific Reports, 2019, 9(1): 1-11. |
55 | MOUDRAKOVSKI I L, RATCLIFFE C I, MCLAURIN G E, et al. Hydrate layers on ice particles and superheated ice: a1 HNMR microimaging study[J]. The Journal of Physical Chemistry A, 1999, 103(26): 4969-4972. |
56 | PRADO M R, CAZARES Y, JANDA K C. Toward the efficient production of methane/propane double hydrate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5160-5164. |
57 | ABBONDONDOLA J A, FLEISCHER E B, JANDA K C. Propane clathrate hydrate formation accelerated by xenon[J]. The Journal of Physical Chemistry C, 2009, 113(11): 4717-4720. |
[1] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[2] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[3] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[4] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[5] | WANG Guangyu, MENG Jinghui, ZHANG Kai. Simulation of intermittent microwave drying of coal slime and dielectric properties [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1779-1786. |
[6] | GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425. |
[7] | GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. |
[8] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
[9] | ZHOU Zhiyi, WANG Jinqing, WANG Guangxin, CHI Zuohe, WENG Yukan. Study on pore size of bubble maturation characteristics in porous media [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1265-1271. |
[10] | MA Xiaojuan, WANG Yufei, FENG Xiao. Energy system optimization of natural gas hydrate mining platform [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1667-1676. |
[11] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[12] | ZHANG Xuemin, ZHANG Shanling, LI Pengyu, HUANG Tingting, YIN Shaoqi, LI Jinping, WANG Yingmei. Research progress on influencing factors and strengthening mechanism of CO2-CH4 hydrate replacement in porous media system [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5259-5271. |
[13] | WEN Fengshuo, LIU Shaoshuai, WU Wenting, SONG Jiantang, ZHU Haifeng, JIANG Zhenhua, WU Yinong. Comparison of pure stainless steel wire mesh and mixed HoCu2 particle as regenerator material at 10—30K [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 113-119. |
[14] | SHU Zhao, ZHONG Ke, XIAO Xin, JIA Hongwei, LYU Fengyong, CHANG Sha. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. |
[15] | WU Hao, SUO Mengshan, TAO Xingxiao, CHE Zhizhao, SUN Kai, CHEN Rui, WANG Tianyou. Optical visualization of gas-liquid two-phase flow in open-cell metal foam [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4152-4164. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |