Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 265-278.DOI: 10.16085/j.issn.1000-6613.2021-0482
• Materials science and technology • Previous Articles Next Articles
SHU Zhao1(), ZHONG Ke1, XIAO Xin1,2(), JIA Hongwei1, LYU Fengyong3, CHANG Sha4
Received:
2021-03-10
Revised:
2021-04-07
Online:
2021-11-12
Published:
2021-11-12
Contact:
XIAO Xin
舒钊1(), 钟珂1, 肖鑫1,2(), 贾洪伟1, 吕凤勇3, 常沙4
通讯作者:
肖鑫
作者简介:
舒钊(1998—),男,硕士研究生,研究方向为建筑蓄能。E-mail: 基金资助:
CLC Number:
SHU Zhao, ZHONG Ke, XIAO Xin, JIA Hongwei, LYU Fengyong, CHANG Sha. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278.
舒钊, 钟珂, 肖鑫, 贾洪伟, 吕凤勇, 常沙. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0482
1 | 王文楷, 董震, 赖艳华, 等. 相变储能材料的研究与应用进展[J]. 制冷与空调, 2020, 34(1): 91-103. |
WANG Wenkai, DONG Zhen, LAI Yanhua, et al. The research and application progress of phase change energy storage materials[J]. Refrigeration & Air Conditioning, 2020, 34(1): 91-103. | |
2 | 刘晓龙, 柯国炬, 田波. 相变材料在大体积混凝土中应用的研究现状[J]. 新型建筑材料, 2015, 42(5): 81-85. |
LIU Xiaolong, KE Guoju, TIAN Bo. Recent research of the application of phase change materials in mass concrete[J]. New Building Materials, 2015, 42(5): 81-85. | |
3 | 石宪, 崔宏志. 相变储能混凝土制备及其力学性能研究[J]. 混凝土, 2013(1): 48-50, 54. |
SHI Xian, CUI Hongzhi. Phase change energy storage concrete preparation and its mechanical properties[J]. Concrete, 2013(1): 48-50, 54. | |
4 | 王继芬, 谢华清, 辛忠, 等. 纳米ZnO/石蜡复合相变材料的热物理性质研究[J]. 工程热物理学报, 2011, 32(11): 1897-1899. |
WANG Jifen, XIE Huaqing, XIN Zhong, et al. Study on the thermophysical properties of paraffin wax composites containing ZnO nanoparticles[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1897-1899. | |
5 | KARAIPEKLI A, SARı A, BIÇER A. Thermal regulating performance of gypsum/(C18-C24) composite phase change material (CPCM) for building energy storage applications[J]. Applied Thermal Engineering, 2016, 107: 55-62. |
6 | WEN R L, ZHANG X G, HUANG Z H, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 273-279. |
7 | 付露露. CaCl2·6H2O/膨胀珍珠岩复合相变材料的制备及其储热建筑材料研究[D]. 广州: 华南理工大学, 2018. |
FU Lulu. Study on preparation of CaCl2·6H2O/expanded perlite composite phase change material and application in building energy conservation[D]. Guangzhou: South China University of Technology, 2018. | |
8 | LI R F, ZHOU Y, DUAN X L. A novel composite phase change material with paraffin wax in tailings porous ceramics[J]. Applied Thermal Engineering, 2019, 151: 115-123. |
9 | 王晟琪. 复合相变储能多孔砖的传热特性研究及其优化设计[D]. 南京: 南京理工大学, 2018. |
WANG Shengqi. Study on heat transfer characteristics of energy storage brick filled with PCM and its optimization design[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
10 | 丁一帆. 室温水合盐定形复合相变材料的制备及性能[D]. 广州: 华南理工大学, 2019. |
DING Yifan. Preparation and properties of room-temperature salt hydrate form-stable composite phase change materials[D]. Guangzhou: South China University of Technology, 2019. | |
11 | 张秋香, 陈建华, 陆洪彬, 等. 纳米二氧化硅改性石蜡微胶囊相变储能材料的研究[J]. 高分子学报, 2015(6): 692-698. |
ZHANG Qiuxiang, CHEN Jianhua, LU Hongbin, et al. Studies on nanosilica modified paraffin microcapsule phase change energy storage materials[J]. Acta Polymerica Sinica, 2015(6): 692-698. | |
12 | 海彬, 姜高亮, 芦雷鸣, 等. 复凝聚法制备石蜡相变储能微胶囊及其性能研究[J]. 应用化工, 2018, 47(1): 10-13, 17. |
Bin HAI, JIANG Gaoliang, LU Leiming, et al. Preparation and properties of microencapsulated paraffin phase change material by complex coacervation[J]. Applied Chemical Industry, 2018, 47(1): 10-13, 17. | |
13 | 杜开明. 相变型保温墙体材料的制备及性能研究[D]. 重庆: 重庆大学, 2009. |
DU Kaiming. Preparation and experiemtal study of thermal insulating wall materials with PCM[D]. Chongqing: Chongqing University, 2009. | |
14 | 李佳龙. 定型癸酸/硬脂酸相变材料在蓄热混凝土中的应用研究[D]. 武汉: 武汉理工大学, 2017. |
LI Jialong. Study on application of stabilized capric acid/stearic acid phase change material in thermal storage concrete[D]. Wuhan: Wuhan University of Technology, 2017. | |
15 | WEI H T, XIE X Z, LI X Q, et al. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material[J]. Applied Energy, 2016, 178: 616-623. |
16 | MARTÍN M, VILLALBA A, INÉS FERNÁNDEZ A, et al. Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: lab-scale characterization[J]. Energy and Buildings, 2019, 192: 75-83. |
17 | YUAN Y G, YUAN Y P, ZHANG N, et al. Preparation and thermal characterization of capric-myristic-palmitic acid/expanded graphite composite as phase change material for energy storage[J]. Materials Letters, 2014, 125: 154-157. |
18 | WEN R L, ZHANG X G, HUANG Y T, et al. Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings[J]. Energy and Buildings, 2017, 139: 197-204. |
19 | 石文华. 硅藻土基体相变储能石膏板的制备与性能研究[D]. 武汉: 武汉理工大学, 2018. |
SHI Wenhua. Study on the preparation and properties of diatomite based phase change energy storage plasterboard[D]. Wuhan: Wuhan University of Technology, 2018. | |
20 | 樊铁林, 陈蜜蜜, 檀星, 等. 脂肪酸/废加气块定形相变储能集料制备及性能[J]. 化工进展, 2017, 36(3): 996-1002. |
FAN Tielin, CHEN Mimi, TAN Xing, et al. Preparation and properties of shape-stabilized phase change aggregate from fatty acid and waste autoclaved aerated concrete[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 996-1002. | |
21 | WANG R, REN M, GAO X J, et al. Preparation and properties of fatty acids based thermal energy storage aggregate concrete[J]. Construction and Building Materials, 2018, 165: 1-10. |
22 | LIU C, YUAN Y P, ZHANG N, et al. A novel PCM of lauric-myristic-stearic acid/expanded graphite composite for thermal energy storage[J]. Materials Letters, 2014, 120: 43-46. |
23 | 柳馨, 铁健, 铁生年. 纳米粉体对Na2SO4·10H2O过冷及相分层现象的影响[J]. 人工晶体学报, 2015, 44(11): 3072-3078. |
LIU Xin, Jian TIE, Shengnian TIE. Effect of nano powder addition on the subcooling and phase stratification of sodium sulfate decahydrate[J]. Journal of Synthetic Crystals, 2015, 44(11): 3072-3078. | |
24 | FU L L, WANG Q H, YE R D, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation[J]. Renewable Energy, 2017, 114: 733-743. |
25 | YE R D, LIN W Z, FANG X M, et al. A numerical study of building integrated with CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Thermal Engineering, 2017, 126: 480-488. |
26 | YUAN K J, ZHOU Y, SUN W C, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J]. Composites Science and Technology, 2018, 156: 78-86. |
27 | LI G, ZHANG B B, LI X, et al. The preparation, characterization and modification of a new phase change material: CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt[J]. Solar Energy Materials and Solar Cells, 2014, 126: 51-55. |
28 | 李海丽, 季旭, 冷从斌, 等. 膨胀石墨/五水硫代硫酸钠相变储能复合材料热性能[J]. 复合材料学报, 2016, 33(12): 2941-2951. |
LI Haili, JI Xu, LENG Congbin, et al. Thermal performance of expanded graphite/Na2S2O3·5H2O phase change energy storage composite[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2941-2951. | |
29 | 李果, 欧阳婷, 蒋朝, 等. 碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征[J]. 复合材料学报, 2020, 37(5): 1130-1137. |
LI Guo, OUYANG Ting, JIANG Zhao, et al. Preparation and characterization of paraffin phase change composites reinforced by carbon fiber-graphite nanoplatelets network[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1130-1137. | |
30 | 王辉. 石膏基复合相变材料的制备及其性能研究[D]. 绵阳: 西南科技大学, 2020. |
WANG Hui. Study on preparation and performance of gypsum-based composite phase change materials[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
31 | WEN R L, HUANG Z H, HUANG Y T, et al. Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials[J]. Energy and Buildings, 2016, 116: 677-683. |
32 | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
33 | LIU Y S, XIE M J, GAO X J, et al. Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage[J]. Applied Thermal Engineering, 2018, 140: 112-119. |
34 | ABDEN M J, TAO Z, PAN Z, et al. Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation[J]. Applied Energy, 2020, 259: 114113. |
35 | 杨英英, 伏舜宇, 武卫东, 等. 新型建筑用二元复合定型相变材料的制备及性能评价[J]. 化工进展, 2020, 39(10): 4119-4126. |
YANG Yingying, FU Shunyu, WU Weidong, et al. Preparation and performance evaluation of a new type of binary shaped phase change material for buildings[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4119-4126. | |
36 | RAMAKRISHNAN S, WANG X M, SANJAYAN J, et al. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage[J]. Materials Letters, 2017, 192: 88-91. |
37 | RAMAKRISHNAN S, WANG X M, SANJAYAN J, et al. Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material[J]. Solar Energy, 2017, 158: 626-635. |
38 | 周东一. 新型相变陶砂及混凝土的制备与储热性能研究[D]. 南京: 东南大学, 2019. |
ZHOU Dongyi. Preparation and thermal storage performance of phase change ceramsite sand and concrete[D]. Nanjing: Southeast University, 2019. | |
39 | SUN D, WANG L J, LI C M. Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material[J]. Materials Letters, 2013, 108: 247-249. |
40 | 王富国, 陈立萌, 朱孝钦, 等. 基于石墨尾矿的复合相变储能材料的制备与表征[J]. 化工矿物与加工, 2018, 47(2): 23-27. |
WANG Fuguo, CHEN Limeng, ZHU Xiaoqin, et al. Preparation and characterization of composite phase change energy storage material[J]. Industrial Minerals & Processing, 2018, 47(2): 23-27. | |
41 | 秦维高. 耐水相变储热石膏板的制备与性能研究[D]. 武汉: 武汉理工大学, 2018. |
QIN Weigao. Study on the preparation and properties waterproof phase change heat storage gypsum board[D]. Wuhan: Wuhan University of Technology, 2018. | |
42 | KARAIPEKLI A, SARı A. Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings[J]. Solar Energy Materials and Solar Cells, 2016, 149: 19-28. |
43 | 刘云霄, 何睿, 邓云鸽, 等. 改性脱硫建筑石膏基相变储能复合材料的性能研究[J]. 新型建筑材料, 2017, 44(12): 5-7, 15. |
LIU Yunxiao, HE Rui, DENG Yunge, et al. Properties investigation on modified FGD gypsum based phase change insulating composite material[J]. New Building Materials, 2017, 44(12): 5-7, 15. | |
44 | REN M, LIU Y S, GAO X J. Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings[J]. Energy, 2020, 197: 117262. |
45 | XU T, LI Y T, CHEN J Y, et al. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2017, 169: 215-221. |
46 | FANG Y T, DING Y F, TANG Y F, et al. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating[J]. Applied Thermal Engineering, 2019, 150: 1177-1185. |
47 | 许淘淘. 基于膨胀珍珠岩相变建筑调温材料的制备及其传热特性研究[D]. 徐州: 中国矿业大学, 2019. |
XU Taotao. Study on preperation and thermal properties of composite phase change building temperature regulating materials based on expanded perlite[D]. Xuzhou: China University of Mining and Technology, 2019. | |
48 | SARI A, SHARMA R K, HEKIMOĞLU G, et al. Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials[J]. Energy and Buildings, 2019, 188/189: 111-119. |
49 | 王勇. 相变温控材料热物性测量技术及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
WANG Yong. Research on measurement technology and experiment of thermophysical properties of phase change materials for temperature control[D]. Harbin: Harbin Institute of Technology, 2019. | |
50 | XIAO X, ZHANG P, LI M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105. |
51 | 闫全英, 王威. 低温相变石蜡储热性能的实验研究[J]. 太阳能学报, 2006, 27(8): 805-810. |
YAN Quanying, WANG Wei. Experimental study on the thermal performance of paraffin[J]. Acta Energiae Solaris Sinica, 2006, 27(8): 805-810. | |
52 | 李佳鑫. 癸酸-石蜡-膨胀石墨复合相变蓄热材料的制备及热性能研究[D]. 南京: 南京师范大学, 2019. |
LI Jiaxin. Preparation and thermal properties of capric acid-paraffin-expanded graphite composite phase change heat storage materials[D]. Nanjing: Nanjing Normal University, 2019. | |
53 | GUO X, HUANG Y H, CAO J Z. Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material[J]. Energy and Buildings, 2018, 158: 1257-1265. |
54 | RAO V V, PARAMESHWARAN R, RAM V V. PCM-mortar based construction materials for energy efficient buildings: a review on research trends[J]. Energy and Buildings, 2018, 158: 95-122. |
55 | RAMAKRISHNAN S, WANG X M, SANJAYAN J, et al. Thermal performance assessment of phase change material integrated cementitious composites in buildings: experimental and numerical approach[J]. Applied Energy, 2017, 207: 654-664. |
56 | YANG Y Y, WU W D, FU S Y, et al. Study of a novel ceramsite-based shape-stabilized composite phase change material (PCM) for energy conservation in buildings[J]. Construction and Building Materials, 2020, 246: 118479. |
57 | JEONG S G, CHANG S J, WI S, et al. Energy efficient concrete with n-octadecane/xGnP SSPCM for energy conservation in infrastructure[J]. Construction and Building Materials, 2016, 106: 543-549. |
58 | YEON J H. Thermal behavior of cement mortar embedded with low-phase transition temperature PCM[J]. Construction and Building Materials, 2020, 252: 119168. |
59 | UTHAICHOTIRAT P, SUKONTASUKKUL P, JITSANGIAM P, et al. Thermal and sound properties of concrete mixed with high porous aggregates from manufacturing waste impregnated with phase change material[J]. Journal of Building Engineering, 2020, 29: 101111. |
60 | WANG X, YU H, LI L, et al. Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials (SSPCMs)[J]. Energy and Buildings, 2016, 128: 567-574. |
61 | WANG X, YU H, LI L, et al. Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room[J]. Energy Conversion and Management, 2016, 120: 81-89. |
62 | GAO Y N, HE F, MENG X, et al. Thermal behavior analysis of hollow bricks filled with phase-change material (PCM)[J]. Journal of Building Engineering, 2020, 31: 101447. |
63 | KIM H B, MAE M, CHOI Y, et al. Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials[J]. Energy and Buildings, 2017, 152: 524-533. |
64 | 高翔翔, 陈诚, 沈晟炜. 相变墙房间传热模型数学简化与求解探索[J]. 建筑节能, 2017, 45(6): 79-82, 108. |
GAO Xiangxiang, CHEN Cheng, SHEN Shengwei. Mathematical simplification and solution of heat transfer model of the room with phase change material wallboards[J]. Building Energy Efficiency, 2017, 45(6): 79-82, 108. | |
65 | BISWAS K, LU J, SOROUSHIAN P, et al. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard[J]. Applied Energy, 2014, 131: 517-529. |
66 | 梁策. 相变蓄热电采暖技术应用研究[D]. 秦皇岛: 燕山大学, 2018. |
LIANG Ce. Applied study of electric heating technology with phase change heat storage[D]. Qinhuangdao: Yanshan University, 2018. | |
67 | DIACONU B M, CRUCERU M. Novel concept of composite phase change material wall system for year-round thermal energy savings[J]. Energy and Buildings, 2010, 42(10): 1759-1772. |
68 | 刘飞. 双层相变屋顶在夏热冬冷地区的节能潜力研究[D]. 武汉: 华中科技大学, 2019. |
LIU Fei. Study on energy saving potential of A building roof incorporating double layers PCM in hot-summer and cold-winter zone[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
69 | JIN X, HU H Y, SHI X, et al. Comparison of two numerical heat transfer models for phase change material board[J]. Applied Thermal Engineering, 2018, 128: 1331-1339. |
70 | SHAIKH S, LAFDI K. C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics[J]. Carbon, 2010, 48(3): 813-824. |
71 | 任学明. 膨胀石墨/石蜡定形相变储热材料的制备及其性能研究[D]. 南京: 南京航空航天大学, 2019. |
REN Xueming. Preparation and characterization of expanded graphite/paraffin shape stabilized phase change thermal energy storage material[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
72 | JIN X, MEDINA M A, ZHANG X S. Numerical analysis for the optimal location of a thin PCM layer in frame walls[J]. Applied Thermal Engineering, 2016, 103: 1057-1063. |
73 | 张荣明. 导热增强型定形相变材料的研制及其在建筑储能中的应用[D]. 合肥: 中国科学技术大学, 2011. |
ZHANG Rongming. Experimental study on heat conduction enhanced shape-stabilized PCM and application in building energy[D]. Hefei: University of Science and Technology of China, 2011. | |
74 | MI X M, LIU R, CUI H Z, et al. Energy and economic analysis of building integrated with PCM in different cities of China[J]. Applied Energy, 2016, 175: 324-336. |
75 | KONG X F, WANG L, LI H, et al. Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter[J]. Solar Energy, 2020, 195: 259-270. |
76 | 岳立航. 相变墙体的制备技术和经济性研究[D]. 北京: 北京建筑大学, 2014. |
YUE Lihang. Preparation technology and economic study of the phase change wall[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2014. | |
77 | 金丽丽. 相变墙体的实验研究与数值模拟[D]. 北京: 北京建筑大学, 2013. |
JIN Lili. Experimental study and numerical simulation on phase change material wall[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2013. |
[1] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[2] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[5] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[6] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[8] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[9] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[10] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[11] | WANG Guangyu, MENG Jinghui, ZHANG Kai. Simulation of intermittent microwave drying of coal slime and dielectric properties [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1779-1786. |
[12] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[13] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[14] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[15] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |